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Abstract. The ability to pinpoint the geographic location of IP hosts is
compelling for applications such as on-line advertising and network at-
tack diagnosis. While prior methods can accurately identify the location
of hosts in some regions of the Internet, they produce erroneous results
when the delay or topology measurement on which they are based is lim-
ited. The hypothesis of our work is that the accuracy of IP geolocation
can be improved through the creation of a flexible analytic framework
that accommodates different types of geolocation information. In this
paper, we describe a new framework for IP geolocation that reduces to
a machine-learning classification problem. Our methodology considers a
set of lightweight measurements from a set of known monitors to a tar-
get, and then classifies the location of that target based on the most
probable geographic region given probability densities learned from a
training set. For this study, we employ a Naive Bayes framework that
has low computational complexity and enables additional environmen-
tal information to be easily added to enhance the classification process.
To demonstrate the feasibility and accuracy of our approach, we test
IP geolocation on over 16,000 routers given ping measurements from 78
monitors with known geographic placement. Our results show that the
simple application of our method improves geolocation accuracy for over
96% of the nodes identified in our data set, with on average accuracy
70 miles closer to the true geographic location versus prior constraint-
based geolocation. These results highlight the promise of our method
and indicate how future expansion of the classifier can lead to further
improvements in geolocation accuracy.

1 Introduction

There are many ways in which the structural and topological charac-
teristics of the Internet can be considered. One way that has significant
implications for advertisers, application developers, network operators
and network security analysts is to identify the geographic location of
Internet devices (e.g., routers or end hosts). Geographic location can
mean the precise latitude/longitude coordinates of a device or a some-
what more coarse-grained location such as within a zip code, city, county
or country.
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There are a number of challenges in finding the geographic location of
a given Internet device. The most obvious is that there is no standard
protocol that provides the position of any device on the globe (although
DNS entries can include a location record). Furthermore, Internet de-
vices are not typically equipped with location identification capability
(e.g., GPS, although this may change in the future), and even if they
did, some would consider this information private. Prior methods have
focused on identifying the geographic location of an Internet device based
on its position relative to a set of active measurements from landmarks
with known positions. While these methods have been shown to be capa-
ble of producing relatively accurate geographic estimates in some areas,
inaccuracies remain for a variety of reasons. Principal among these is the
fact of inconsistent density of specific measurements across the globe.

The goal of our work is to broadly improve IP geolocation accuracy
over prior methods. Our hypothesis is that the large estimation errors
caused by imperfect measurements, sparse measurement availability, and
irregular Internet paths can be addressed by expanding the scope of
information considered in IP geolocation. The estimation framework that
we develop to test this hypothesis is to cast IP geolocation as a machine
learning-based classification problem. This extensible approach enables
information from multiple datasets to be fused such that areas that have
low information content from one measurement can be compensated with
better information content from other measurements.

To flesh out this framework in order to test our hypothesis, we must
select both a classification method and a set of measurements that can
be used to estimate IP geolocation. We develop a Naive Bayes estima-
tion method that assigns a given IP target to a geographic partition
based on a set of measurements associated with that IP target. Given
the potentially large number of measurements to an IP target, prob-
ability likelihood estimation is simplified by a Naive Bayes approach.
The network measurement data considered in this framework includes
latency and hop count from a set of landmarks to an IP target. We also
include population density in the framework as a demonstration of a non-
network measurement that can help refine the estimates. The selection of
this classifier/measurement combination was made to demonstrate the
potential of this new approach, but is not meant to be definitive nor
comprehensive.

To test and evaluate the capabilities of this initial instance of our
learning-based approach, we consider geographic partitioning at the level
of counties in the continental United States 1. While considerable Inter-
net topology lies outside the continental United States, the initial val-
idation on this dataset will motivate future work on end hosts located
outside the United States. We identified a target set of 114,815 spatially
diverse nodes in the Internet through full mesh traceroute probing from
Planetlab nodes, supplemental data from the iPlane [1] project, and care-
ful alias resolution. For ground truth on the geographic location of these
target nodes, we used the Maxmind database [2] as a validation set for

1
Finer-grained partitioning on the order of zip codes or city blocks is certainly feasible in our
framework, but county-level was selected due to the availability of data for test and evaluation.



our methodology. Of the 114,815 IP target nodes identified in our mea-
surements, 16,874 were identified in the Maxmind database as being
within the United States with known city locations. Due to its use as
a commercial product, the exact underlying methodology for the Max-
mind database is not available, although extensive use of user-survey
geolocation information is known to be used.2 For that set of 16K target
nodes, we then gathered hop count and latency measurements from 78
PlanetLab nodes located in the United States, which were the starting
point for our assessment.
We selected a subset of target nodes3 for training our classifier, with
the training set nodes having both known measurements to the monitors
and known geolocation. With the remaining nodes, we compare the ge-
olocation estimates of both our learning-based approach and Constraint-
Based Geolocation (CBG) [3] (the current state-of-the-art geolocation al-
gorithm using ping measurements) validated against the locations found
using the Maxmind database. We find that our estimator is able to pro-
vide better location estimates than CBG for 96% of the nodes and on
average provide an estimate that is 70 miles closer to the true location.
We believe that these results make a compelling case for future develop-
ment of learning-based methods for IP geolocation.

2 Learning-based IP Geolocation

Given a single target IP address, can we determine the geographic lo-
cation of the target IP? Consider a single target IP address with a set
of measurements from a set of monitors with known geolocation to this
target IP address. For the purposes of this work, the measurement set
M (= {m1, m2, ..., mM}) is the collection of both latency and hop count
values going from the monitor set. Without loss of generality, now con-
sider a set of possible counties in the continental United States (C),
such that the target is located in some county c ∈ C. This changes
the underlying problem to, Given the measurement set M, can we esti-
mate which county c ∈ C the target IP is located in? The best classifier
would choose the county (ĉ) that the target is most probably located in
given the measurement set, ĉ = arg max

c∈C
P (c | M). Using Bayes Theo-

rem [4] (P (A|B) = P (B|A)P (A)
P (B)

), therefore we can restate the classifier

as ĉ = arg max
c∈C

P (c | M) = arg max
c∈C

P (M| c) P (c). Where the value

P (M), the probability of observing the set of measurements, can be
ignored due to this value being constant across any choice of county c.
Next, we expand our estimation framework to consider features other
than measurements from monitors to IP targets. Given that the targets
in this paper are routers, we can use the work in [5] to inform where these
routers should be geographically located. Specifically, the value P (c),
the probability of classifying a target in county c, will be chosen using

2
Due to its dependence on user generated data, updating the Maxmind database requires extensive
user surveying that is not needed with our learning-based methodology.

3
We consider IP addresses and nodes to be equivalent in this paper since even if alias resolution
on routers is imperfect, it should not affect our empirical results.



the results showing that the number of routers in a specific geographic
location is strongly correlated with the population of that geographic
location. Therefore, we can estimate the probability of classifying into a
given county to be the population of that county divided by the total
population in all the counties under consideration.

P̂ (ci) =
Population of ci∑

j∈C Population of cj
(1)

How can we estimate the value P (M| c), the probability likelihood of a
measurement set M being observed given the target is located in county
c? Given a set of training data, a set of IP addresses with known mea-
surement sets M and locations c, we could use off-the-shelf techniques
(kernel density estimators, histograms, etc.) to estimate the multivariate
likelihood density P (M| c). A problem is that the setM is most likely of
high dimensions (with dimensionality equal to the number of hop count
and latency measurements observed to this target, in this case, on the
order of 100), and most density estimator techniques have an error rate
that increases quickly with the dimension of the problem [4].
If all of the values of M were statistically independent from each
other, then the likelihood density could be restated as: P (M| c) =
P ({m1, m2, ..., mM} | c) ≈ P (m1 | c) P (m2 | c) ...P (mM | c) This con-
verts the problem from estimating one M -dimensional density to es-
timating M one-dimensional densities. However, it should be assumed
that there is a large degree of correlation between measurements, with
prior work in [6] showing correlation between hop count measurements,
and work in [7] showing correlation between latency measurements. The
risk of assuming statistical independence between measurements is in-
formed by empirical studies on highly dependent data in [8]. That work
shows that for classification, there is little penalty for assuming statis-
tical independence even when the measurements are highly statistically
dependent. This is due to classification performance depending only on
the most-probable class (in this case, county region) likelihood prob-
ability being greater than other class likelihood probabilities, not the
goodness-of-fit of our estimated likelihood probability to the true likeli-
hood probability.
The next step in our learning-based framework is to estimate the one-
dimensional densities, P (mi | c), the probability of the measurement
value mi being observed given that the target is located in county c.
Consider a set of training data, where for each training target, both the
measurement set M and the geolocation county c is known. Given the
known monitor placement, for the entire training set we can determine
the distance vector d = {d1, d2, ..., dM}, where di is the distance be-
tween the monitor associated with measurement mi and county c. These
measurements with distance ground truth can then be used to learn
the density (the probability of observing measurement mi given that
the target is located di distance away from the monitor associated with
measurement mi).
Simple density estimators, such as histograms, can be used and will as-
sure that measurement outliers do not significantly contribute to the den-
sity estimation. One drawback to histogram estimators is that the lack



of smoothness in the estimated density can hurt performance. Instead,
we will look to use Kernel Density Estimators [4], which use the summa-
tion of smooth kernel functions to estimate the density. This smoothness
in the estimated density allows improved estimation of the true density
given the limited size of our training set.

For hop count measurements, a one-dimensional density will be estimated
at each hop count value ranging from one hop away from a monitor to ten
hops away (it is assumed that any distance longer than ten hops will not
help in estimating distance). For latency measurements, due to the lim-
ited amount of training data, the measurements are aggregated together
separated by 10ms, with a single estimated one-dimensional density for
0-9ms, a separate one-dimensional density for 10-19 ms, 20-29ms, etc. An
example of a kernel estimated density for latency measurements can be
seen in Figure 1 along with the resulting probability distribution across
the US counties for observing this latency measurement to a monitor
with known geolocation.

Fig. 1. (Left) - Probability for latency measurements between 10-19ms being observed given a tar-
get’s distance from a monitor. Stem plot - Histogram density estimation, Solid line - Kernel density
estimation. (Right) - The kernel estimated probability of placement in each county given latency
observation between 10-19ms from a single monitor marked by ’x’.

The amount of location information from latency measurements is likely
to be of more use than the location information derived from hop count
measurements or population data. Therefore we introduce two weights
λhop and λpop as the weights on the hop count measurements and the
population density data respectively. Informed by the geolocation im-
provement by using measurement weights in the Octant framework [9],
the ordering of the measurements should also imply some degree of im-
portance, as the location of the monitor with the shortest latency mea-
surement to the target should inform the classifier more than the moni-
tor with the 30-th closest latency measurement. Therefore, we will also
weight the ordering of measurement values by an exponential, such that
the i-th latency measurement is weighted by exp (−i · γlat) and the j-th
hop count measurement is weighted by exp (−j · γhop). The weight pa-
rameter values (λhop, λpop, γlat, γhop) will be found by the weight values
that minimize the sum of squared distance errors between the training
set of IPs known locations and the Naive Bayes estimated locations.



2.1 Methodology Summary

Dividing the measurement set M into the set of latency measurements
{l1, l2, ..., lm} and the set of hop count measurements {h1, h2, ..., hm}
(where the total number of measurements M = 2m), our learning-based
classifier using the independence assumption can be restated using the
kernel density estimators (where instead of the true likelihood P (mi | c)
we have the kernel estimated P̂ (mi | c)), the weight terms, and the mono-
tonic properties of the logarithm function as

ĉi = arg max
c∈C

(
λpop log P̂ (c) + fhop + flat

)
(2)

Where fhop = λhop

∑m
j=1 exp (−j · γhop) log P̂ (hj | c), and flat =∑m

j=1 exp (−j · γlat) log P̂ (lj | c), and the term P̂ (c) for the 3,107 coun-
ties in the continental United States is found using Equation 1.
A summary of the complete methodology is seen in Algorithm 1. Note
that all the computational complexity of this algorithm is on training
the parameters (λhop, λpop, γlat, γhop). Each target is geolocated using
only O (M |C|) number of multiplications, where |C| is the total number
of location classes under consideration (in this paper, the number of
counties in the continental United States), and M is the total number of
measurements to the current target IP. The computational complexity
being linear in both the number of locations and the number of monitors
demonstrates the feasibility of future large-scale Internet studies using
this method.

Algorithm 1 - Naive Bayes IP Geolocation Algorithm

Initialize:
– Measure the hop-count and latency from every monitor to a training set with known geographic

locations.
– Using a population density database, find P̂ (c) for all c ∈ C using Equation 1.

– Using kernel density estimators, estimate the one-dimensional distribution P̂ (m|c) for every
measurement m ∈ M.

– Find the optimal values for λhop, λpop, γlat, γhop that minimize the sum of squared distance

errors over the training set.

Main Body
1. For each target IP with unknown geography, estimate the location ĉi using Equation 2.

3 Experiments

To assess our geolocation algorithm, we sought a large set of IP addresses
of routers with as much spatial diversity as possible within the continen-
tal United States. Starting with the spatially diverse set of Planetlab [10]
node locations, the full mesh traceroute probing between these nodes
will find a very large set of router IP addresses with high spatial diversity.



Existing data were provided by the iPlane project [1], which performs
a traceroute from all available Planetlab hosting sites to a set of tar-
get prefixes obtained through the Routeviews project [11]. We used four
weeks of iPlane data collected over the period of 12 December 2008 to 8
January 2009. In addition to the iPlane data, we collected traceroute

data between a full mesh of Planetlab hosting sites, of which there were
375 at the time we collected these data. For performing traceroutes, we
used the Paris traceroute tool [12], using it once in UDP mode and a sec-
ond time in ICMP mode in order to discover as many routers as possible
[13]. Options were set in the Paris traceroute tool so that it produced
a low level of probes while taking somewhat longer to complete a given
traceroute. We collected a full mesh of Planetlab traceroute measure-
ments three separate times between December 11, 2008 and January 6,
2009. For these measurements, we were able to use about 225 Planetlab
sites due to maintenance and other issues.
Using these two data sets, we were able to discover 125,146 unique router
IPv4 addresses. A standard problem with traceroute-based studies is
IP interface disambiguation, also known as alias resolution. Interfaces
on a given Internet router are typically assigned separate IP addresses;
identifying which addresses correspond to the same physical router is the
challenge in alias resolution. To de-alias our data set, we used the alias
database published by the iPlane project. This database builds on prior
work in alias resolution, including the methods used by the Rocketfuel
project [14]. Upon de-aliasing our set of router IP addresses, we identified
114,815 routers.
To construct the measurements used in our analysis (as described below),
we required the hop counts and latency measurements to each identified
router from all available Planetlab sites. In order to limit the overhead
of probing for this hop count and latency data, we used the following ap-
proach. For each IP address, we sent a direct ICMP echo request packet
(i.e., a ping). In other work, it was observed that a majority of Internet
hosts respond to ICMP echo request packets [15]; we also found this to
be true. Indeed, more than 95% of all router IP addresses we identified
responded. This should not be surprising considering the fact that these
addresses were initially identified through active probing. For computing
the hop count, we use the methodology of [16] on the echo response (note
that this is the hop count of the reverse path). For geolocation ground
truth, we use the Maxmind database [2], which is rated to be 82% ac-
curate within 25 miles for IPs located within the US. From our dataset
of 114,815 disambiguated routers, Maxmind identified 16,874 routers lo-
cated in the continental United States with known county location. Using
5-Fold Cross Validation [4], we test the performance of the methodology
five times using 20% of the routers as our training set, leaving the re-
maining 80% of the routers to test the accuracy of our methodology.
We compare the geolocation results from our learning-based method to
Constraint-Based Geolocation (CBG). To generate CBG geolocation es-
timates, we implemented the algorithm described in [3]. CBG is the cur-
rent state-of-the-art IP geolocation methodology using only ping-based
measurements. The basic intuition behind CBG is that each latency mea-
surement to a set of monitors with known location can be considered a



series of constraints, where given speed-of-light in fiber assumptions and
self-calibration using a set of training data, we can determine a feasi-
ble geographic region given each latency measurement. Given a series of
latency measurements, the possible geographic placement is considered
the intersection of many constraint regions, with the estimated location
behind the centroid of this intersection region.

To assess performance of both geolocation algorithms, we will consider
the error distance to be the distance in miles between the centroid of our
estimated classified county and the centroid of the ground truth (Max-
mind) county. Performance of our learning-based Naive Bayes framework
and the CBG method with respect to the empirical cumulative probabil-
ity can be seen in Figure 2-(left). As seen in the figure, the geolocation
estimates produced by our learning-based framework are more accurate
than CBG for 96% of the routers. On average the Naive Bayes location
estimates are 70 miles closer to the true location than the CBG estimates.

Fig. 2. (Left) - Empirical cumulative probability of error distance. (Right) - Breakdown of each
quintile empirical cumulative probability error distance for our learning-based methodology.

To analyze the impact of using multiple features in our learning-based
framework, we generate geolocation estimates when both population den-
sity information is removed (setting the weight of using the population
density to zero, λpop = 0) and when hop count information is removed
(setting the weight of using the hop count data to zero, λhop = 0).
These two conditions resulted in an average error distance of 261.89 and
277.29 miles, for missing population data and missing hop count data re-
spectively. These results indicate that both the hop count data and the
population density information significantly contribute to the improved
performance of the methodology. Using only latency information, the
Naive Bayes methodology still outperforms the CBG method (278.96
mile average error vs. 322.49 mile average error) due to the more accu-
rate multiple latency density estimates used to classify the location of
each end host instead of simply using the intersection of feasible latency
regions as in the CBG methodology.

Using Equation 2, the Naive Bayes framework can find P̂ (ĉ | M), the
estimated probability of each target being classified correctly by our
learning-based framework given the set of measurements. This can be
considered a level of confidence in the classification of each target IP.



Using this confidence level, we can sort into quintiles and form quintile
sets containing the 20% of the target IPs with the largest P̂ (ĉ | M) values
(e.g., the targets we are most confident in accurately geolocating), to a

quintile set containing the 20% of target IPs with the smallest P̂ (ĉ | M)
values (e.g., the targets we are least confident in). Figure 2-(right) shows
how this confidence level accurately predicts the quality of our classifica-
tion, with the most confident 20% of the targets being classified far more
accurately than any other quintile set. Therefore, in addition to estimat-
ing the geolocation of each target IP, we also have a level of confidence
that directly corresponds to the accuracy of our prediction.

4 Related Work

The main prior work in IP geolocation that we compared and con-
trasted our learning-based methodology with is Constraint-Based Ge-
olocation [3]. More recent geolocation work in [9],[17] has found im-
provements over Constraint-Based Geolocation, but both methodologies
require Traceroute-based measurements to the targets along with loca-
tion hints acquired by unDNS [14] probes. One potential disadvantage
of these methodologies is the dependency on DNS naming conventions,
which have been shown to not always be reliable [18]. This requires so-
phisticated location validation and reweighting mechanisms to be devel-
oped and maintained. The focus of this work was to introduce our ele-
gant learning-based geolocation framework and validate its performance
using simple ping-based measurements. We leave the extension of our
learning-based framework to these newer Traceroute-based methodolo-
gies as future work. To the best of our knowledge, this is the first work
to frame IP geolocation as a machine learning problem.

5 Conclusions and Future Work

The goal of our work is to improve the accuracy of estimates of the ge-
ographic location of nodes in the Internet. Our work is based on the
hypothesis that the ability to zero in on the geolocation of nodes is im-
proved by considering a potentially broad set of features including both
active measurements and more static characteristics associated with loca-
tions. To consider this hypothesis, we introduce a learning-based frame-
work that enables geolocation estimates to be generated efficiently, and is
flexible in the feature space that can be considered. In this initial study,
we employ a Naive Bayes classifier and generate estimates from two types
of empirical measurements in our framework (latency and hop counts)
and one societal characteristic (population density). We then test the
feasibility of our learning-based approach using an empirical dataset of
over 16K target routers, and latency and hop count data to 78 mon-
itors with known geographic locations. We show that our geolocation
estimates are more accurate for 96% of the routers in our test set versus
the estimates generated by a current state-of-the-art constraint-based
geolocation method. We also show how the use of multiple features does



indeed enhance the overall estimation accuracy. In future work, we plan
to investigate additional features that improve the accuracy of our esti-
mates, and the possible use of a multi-scale classification framework that
narrows the classification region given classification confidence levels.
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