Kiss to Abacus: a comparison of P2P-TV traffic
classifiers

Alessandro FinamoteMichela Med, Dario Rossi, Silvio Valent?

L Politecnico di Torino, Italy
2 TELECOM Paristech, France

Abstract. In the last few years the research community has proposezaev
techniques for network traffic classification. While thefpemance of these meth-
ods is promising especially for specific classes of traffid particular network
conditions, the lack of accurate comparisons among thenesaldifficult to
choose between them and find the most suitable techniquévtar geeds.
Motivated also by the increase of P2P-TV traffic, this worknpares Abacus,
a novel behavioral classification algorithm specific for PRAPtraffic, and Kiss,
an extremely accurate statistical payload-based clas$ifie first evaluate their
performance on a common set of traces and later we analyzeeheirements
in terms of both memory occupation and CPU consumption. @sults show
that the behavioral classifier can be as accurate as theguhpbksed with also a
substantial gain in terms of computational cost, althougtan deal only with a
very specific type of traffic.

1 Introduction

In the last years, Internet traffic classification has até@a lot of attention from the re-
search community. This interest is motivated mainly by teasons. First, an accurate
traffic classification allows network operators to perforrany fundamental activities,
e.g. network provisioning, traffic shaping, QoS and lawfuérception. Second, tradi-
tional classification methods, which rely on either welblum ports or packet payload
inspection, have become unable to cope with modern apiglitate.g., peer-to-peer)
or with the increasing speed of modern networks [1, 2].

Researchers have proposed many innovative techniquedtessdthis problem.
Most of them exploit statistical properties of the traffimgeated by different applica-
tions at the flow or host level. These novel methods have thardadge of requiring less
resources while still being able to identify applicationsigh do not use well-known
ports or exploit encrypted/closed protocols. However #uok lof accurate and detailed
comparisons discourages their adoption. In fact, sincle staicly tests its own algorithm
on a different set of traces, under different conditions afitein using different metrics,
it is really difficult for a network operator to identify whicmethods could best fit its
needs.

In this paper, we face this problem by comparing two traffassifiers, one of which
is specifically targeted to P2P-TV traffic. These appliaaiavhich are rapidly gaining
a very large audience, are characterized by a P2P infrasteyaroviding a live stream-
ing video service. As next generation of P2P-TV servicesbaginning to offer HD

content, the volume of traffic they generate is expected ¢avgven further, so that
their identification is particularly interesting for netvkaperators. The two considered
classifiers are the first ones to handle this kind of traffic exloit original and quite
orthogonal approaches. Kiss [3] is a statistical payloased classifier and it bases the
classification on the examination of the first bytes of theliapfion-layer payload. It
has already been compared with other classifiers in [4],ipgoto be the best one for
this specific class of traffic. Abacus [5], instead, is a bédra classifier, which derives
a statistical representation of the traffic patterns geadray a host by simply count-
ing the number of packets and bytes exchanged with others gheing small-time
windows. This simple approach can capture several digtsngroperties of different
applications, allowing their classification.

We test the two techniques on an common set of traces, ewajuheir accuracy
in terms of both true positives (i.e., correct classificatad P2P-TV traffic) and true
negatives (i.e., correct identification of traffic othernt@2P-TV). We also provide a
detailed comparison of theirs features, focusing mostlyhendifferences which stem
from the undertaken approaches. Moreover, we formallystigate the computational
complexity by comparing the memory occupation and the cdatfmnal costs.

Results show that Abacus achieves practically the samenpeatce of Kiss and
both classifiers exceed 99% of correctly classified bytesPRP-TV traffic. Abacus
exhibits some problems in terms of flow accuracy for one sppeagplication, for which
it still has a high bytewise accuracy. The two algorithmsalse very effective when
dealing with non P2P-TV traffic, raising a negligible numbéfalse negatives. Finally
we found that Abacus outperforms Kiss in terms of computatomplexity, while
Kiss is a much more general classifier, able to work with a widege of protocols and
network conditions.

The paper is organized as follows. In Sec. 2 we present somenefated to ours.
In Sec. 3 we briefly present the two techniques under exam, ith&ec. 4 we test
them on a common set of traces and compare their performéveg@roceed with a
more qualitative comparison of the classifiers in Sec. 5 disasen evaluation of their
computational cost. Finally Sec. 6 concludes the paper.

2 Related Work

Recently, many works have been focusing on the problem #ifctidassification. In
fact, traditional techniques like port-based classifaratbr deep packet inspection ap-
pear more and more inadequate to deal with modern networksgwlications [1, 2].
Therefore the research community has proposed a rather tangber of innovative
solutions, which consist notably in several statisticaivflmased approaches [6—8] and
in a fewer host-based behavioral techniques [9, 10].

The heterogeneity of these approaches, the lack of a comataset and the lack
of a widely approved methodology make a fair and comprelemrsimparison of these
methods a daunting task [11]. In fact, to date, most of theparmon effort has ad-
dressed the investigation of different machine learniobméues [6—8], using the same
set of features and the same set of traces.

More recently, a few works have specifically taken into actdbhe comparison
problem [12—-14]. The authors of [12] present a qualitativergiew of several machine
learning based classification algorithms. On the other hiarjd3] the authors compare
three different approaches (i.e., based on signature, flatistics and host behavior)
on the same set of traces, highlighting both advantagesmaitdtions of the examined
methods. A similar study is carried also in [14], where awhevaluate spatial and
temporal portability of a port-based, a DPI and a flow-badaskifier.

The work presented in this paper follows the same directidh@se comparative
studies, but focuses only on P2P-TV applications. In fa2R-HV has been attract-
ing many users in the last few years, and consequently al&h wensideration from
the research community. Moreover, works on this topic cimeainly in measurement
studies of P2P-TV application performance in real netw¢tks 16]. The two classi-
fiers compared are the only ones proven to correctly idettifytype of traffic. Kiss
was already contrasted with a DPI and a flow-based classiiicalgorithm in [4], prov-
ing itself the most accurate for this class of traffic. Morelowm our study we also take
into account the computational cost and memory occupatidheoalgorithms under
comparison.

3 Classification algorithms

This section briefly introduces the two classifiers. Here aeu$ our attention on the
most relevant aspects in a comparison perspective, whilkefgethe interested reader
to [5] and [3] for further details and discussion on paramssettings.

Both Kiss and Abacus employ supervised machine learninge&is decision pro-
cess, in particular Support Vector Machine - SVM [17], whires already been proved
particularly suited for traffic classification [13]. In th&/BI context, entities to be clas-
sified are described by an ordered sefeatures, which can be interpreted as coordi-
nates of points in a multidimensional space. Kiss and Abdifes for the choice of the
features. The SVM must be trained with a set of previouslgliedb points, commonly
referred to as th&aining set. During the training phase, the SVM basically defines a
mapping between the original feature space and a new spswa|yucharacterized by
an higher dimensionality, where the training points cowddsbparated by hyperplanes.
In this way, the target space is subdivided in areas, eadtiassd to a specific class.
During the classification phase, a point can be classifie@lgifooking for the region
which best fits it.

Before proceeding with the description of the classifidrs, worth analyzing their
common assumption. First of all, they both classifigpoints, i.e., couples (IP address,
transport-layer port) on which a given application is runtniSecond, they currently
work only on UDP traffic, since this is the transport-layeotocol generally chosen
by P2P-TV applications. Finally, given that they rely on acimae learning process,
they follow a similar procedure to perform the classificatids a first step, the engines
derive a signature vector from the analysis of the traffiatied¢ to the endpoint they
are classifying. Then, they feed the vector to the trainetSWhich in turn gives the
classification result. Once an endpoint has been identifitdhe flows which have

that endpoint as source or destination are labeled as beimgrgted by the identified
application.

3.1 Abacus

A preliminary knowledge of the internal mechanisms of PAPapplications is needed
to fully understand the key idea behind the Abacus classKiB2P-TV application per-
forms two different tasks: first, it exchanges video churiles,(small fixed-size pieces
of the video stream) with other peers, and, second, it ppaties to the P2P overlay
maintenance. The most important aspect is that it must keepldading a steady rate
of video stream to provide users with a smooth video expeee@onsequently, a P2P-
TV application maintains a given number of connections witer peers from which it
downloads pieces of the video content. Abacus signatuesthas based on the number
of contacted peers and the amount of exchanged informatimmg them.

In Tab. 4 we have reported the procedure followed by Abachsitd the signatures.
The first step consists in counting the number of packets ateskreceived by an
endpoint from each peer during a time window of 5 sec. At ttgirbéng, let us focus
on the packet counters. We first define a partitiofNah B exponential-sized bins,
ie.Ip = [0,1], I; = 27! + 1,2 andIp = [28,00). Then, we order the observed
peers in bins according to the number of packets they hawdséme given endpoint.
In the pseudo-code we see that we can assign a peer to a bimply sialculating the
logarithm of the associated number of packets. We procet@isame way also for the
byte counters (except that we use a different set of bingllfimbtaining two vectors
of frequencies, namely andb. The concatenation of the two vectors is the Abacus
signature which is fed to the SVM for the actual decision pssc

This simple method highlights the distinct behaviors ofdifeerent P2P-TV appli-
cations. Indeed, an application which implements an agyepeer-discovering strat-
egy will receive many single-packet probes, consequehtiying large values for low
order bins. Conversely, an application which downloads/iieo stream using chunks
of, say, 64 packets will exhibit a large value of the 6-th bin.

Abacus provides a simple mechanism to identify applicatighich are “unknown”
to the SVM (i.e., not present in the training set), which im case means non P2P-TV
applications. Basically, for each class we define a cenbased on the training points,
and we label a signature as unknown if its distance from théroéd of the associated
class exceeds a given threshold. To evaluate this distaecese the Bhattacharyya
distance, which is specific for probability mass functiofl.details on the choice of
the threshold, as well as all other parameters can be foulid. in

3.2 Kiss

The Kiss classifier [3] is instead based on a statisticalyasisbf the packets payload.
In particular, it exploits aChi-Square like test to extract statistical features from the
first application-layer payload bytes. Considering a wimdsef C' segments sent (or
received) by an endpoint, the fifsbytes of each packet payload are split i6igroups

of b bits. Then, the empirical distributiort3; of values taken by th&' groups over the

Table 1. Datasets used for the comparison

Dataset Duration Flows BytegEndpoint$
Napa-WUT 180 min| 73k | 7Gb| 25k
Operator 2006 (opO6¥5 min | 785k| 4Gb| 135k
Operator 2007 (op0})30 min | 319k| 2Gb| 114k

C segments are compared to a uniform distributign= C/2° by means of the Chi-
Square like test:

2° g 2
x, =32 epg @
=1

This allows to measure the randomness of each group of Wit®atiscriminate among
constant/random values, counters, etc. as the Chi-Sgestragsumes different values
for each of them. The array of tlie Chi-Square values defines the application signature.
In this paper, we use the firkt= 12 bytes of the payload divided into groups of 4 bits
(i.e.,G = 24 features per vector) and = 80 segments to compute each Chi-Square.

The generated signatures are then fed to a multi-class SV&hima, similarly to
Abacus. As previously stated, a training set is used to cleniae each target class,
but for Kiss an additional class must be defined to representdmaining traffic, i.e.,
theunknown class. In fact, a multi-class SVM machine always assignsrepkato one
of the known classes, in particular to the best fitting class@l during the decision
process. Therefore, in this case a trace containing onffictrather than P2P-TV is
needed to characterize the unknown class. We already mexqtithat in Abacus this
problem is solved by means of a threshold criterion usinglisiance of a sample from
the centroid of the class. We refer the reader to [3] for aildetaiscussion about Kiss
parameter settings and about the selection of traffic teesgmt the unknown class in
the training set.

4 Experimental Results

4.1 Methodology and Datasets

We evaluate the two classifiers on the traffic generated bydopular P2P-TV appli-
cations, namely PPLive, TVAnts, SopCast and Jéostirthermore we use two distinct
sets of traces to asses two different aspects of our classifie

The first set was gathered during a large-scale active erpatiperformed in the
context of the Napa-Wine European project [18]. For eacHiegtjipn we conduct an
hour-long experiment where several machines provided &ptbject partners run the
software and captured the generated traffic. The machinelved were carefully con-
figured in such a way that no other interfering applicatios waning on them, so that

3 Joost became a web-based application in October 2008. Ainleave conducted the experi-
ments, it was providing VoD and live-streaming by means d? P2

Table 2. Classification results

(a) Flows
Abacus Kiss
pp tv sp jo un pp tv sp jo un nc
pp (13.350.32 - 0.06 86.27 | pp |98.8 - - - 02 1
tv |[0.86 95.670.15 - 332 |[tv | - 973 - 0.01 069 2
sp [0.33 0.0398.04 0.1 1.5 sp| - - 9882 - 0.21 0.97
jo |0.06 221 - 815316.2| | jo | - - - 86.373.63 10
op0§ 0.1 0.1 1.03 0.0698.71 |op0§ - 0.44 0.08 0.5592.686.25
op07 0.21 0.03 0.87 0.098.84 |op07 - 2.13 0.09 1.2184.0712.5

(b) Bytes
Abacus Kiss
pp tv sp jo un pp tv sp jo un nc
pp [99.33 - - 0.11 0.56 | pp [99.97 - - - 0.01 0.02
tv [0.01 99.95 - - 004 | tv | - 9996 - - 0.03 0.01
sp |0.01 0.0999.850.02 0.03 | sp| - - 9998 - 0.01 0.01
jo - - 99.98 0.02| | jo - - - 99.98 0.01 0.01
op0g§ 1.02 - 0.58 0.5597.83 |op0§ - 0.07 - 0.0898.451.4
op073.03 - 0.71 0.2596.01 |op07] - 0.08 0.74 0.0596.262.87

pp=PPLive, tv=Tvants, sp=Sopcast, jo=Joost, un=Unknawanot-classified

the traces contain P2P-TV traffic only. This set is used botinain the classifiers and
to evaluate their performance in identifying the differB@P-TV applications.

The second dataset consists of two real-traffic tracesatetlein 2006 and 2007
on the network of a large Italian ISP. This operator provitigsustomers with un-
controlled Internet access (i.e., it allows them to run aingllof application, from web
browsing to file-sharing), as well as telephony and stregrsé@mnvices over IP. Given the
extremely rich set of channels available through the ISEasting services, customers
are not inclined to use P2P-TV applications and actually uahgraffic is present in
the traces. We verified this by means of a classic DPI classifiavell as by manual
inspection of the traces. This set has the purpose of angahsi number of false alarms
raised by the classifiers when dealing with non P2P-TV traffie report in Tab. 1 the
main characteristics of the traces.

To compare the classification results, we employadhéf i nder tool [19], as al-
ready done in [4] . This simple software takes as input the fogm different classifiers
with the list of flows and the associated classification omteoThen, it calculates as
output several aggregate metrics, such as the percentagesgment of the classifiers
in terms of both flows and bytes, as well as a detailed list efdifferently classified
flows, so eventually enabling further analysis.

4.2 Classification results

Tab. 2 reports the accuracy achieved by the two classifietisetest traces. Each table
is organized in a confusion-matrix fashion where rows spoad to real traffic i.e.

the expected outcome, while columns report the possibésifieation results. For each
table, the upper part is related to the Napa-Wine traceswid lower part is dedicated
to the operator traces. The values in bold on the main didgdiae tables express the
recall, a metric commonly used to evaluate classification perfoceadefined as the
ratio of true positives over the sum of true positives ansefalegatives. The “unknown”
column counts the percentage of traffic which was recognézedot being P2P-TV
traffic, while the column “not classified” accounts for thegntage of traffic that Kiss
cannot classify as it needs at least 80 packets for any emidpoi

At first glance, both the classifiers are extremely accuraterims of bytes. For the
Napa-Wine traces the percentage of true positives exce¥d<@ all the considered
applications. For the operator traces, again the percerdagrue negatives exceeds
96% for all traces, with Kiss showing a overall slightly setperformance. These re-
sults demonstrate that even an extremely lightweight belalclassification mecha-
nism, such as the one adopted in Abacus, can achieve the saoqn of an accurate
payload based classifier.

If we consider flow accuracy, we see that for three out of fqupliaations the
performance of the two classifiers is comparable. Yet Abgcasents a very low per-
centage of 13.35% true positives for PPLive, with a ratheydaaumber of flows falling
in the unknown class. By examining the classification logsfeund that PPLive actu-
ally uses more ports on the same host to perform differerdtioms (e.g. one for video
transfer, one for overlay maintenance). In particulamfrone port it generates many
single-packet flows all directed to different peers, appdydo perform peer discov-
ery. All these flows, which account for a negligible portidittoe overall bytes, fall in
the first bin of the abacus signature, which is always cla&sk#is unknown. However,
from the byte-wise results we can conclude that the vide@eindis always correctly
classified.

Finally, we observe that Kiss has a lower flow accuracy fordperator traces. In
fact, the great percentage of flows falling in the “not cliedl’ class means that many
flows are shorter than 80 packets. Again, this is only a miasué since Kiss byte
accuracy is anyway very high.

5 Comparison

5.1 Functional Comparison

In the previous section we have shown that the classifietmbgthave similar perfor-
mance for the identification of the target applications al agthe “unknown” traffic.
Nevertheless, they are based on very different approablotis,presenting pros and
cons, which need to be all carefully taken into account.

Tab. 3 summarizes the main characteristics of the classifidnich are reviewed
in the following. The most important difference is the cléisation technique used.
Even if both classifiers are statistical, they work at défarlevels and clearly belong
to different families of classification algorithms. Abadgss behavioral classifier since
it builds a statistical representation of the pattern dffitayenerated by an endpoint,
starting from transport-level data. Conversely, Kiss \&sia statistical description of

Table 3. Main characteristics of Abacus and Kiss

Characteristic Abacus Kiss
Technique Behavioral Stocastic Payload Inspection
Entity Endpoint Endpoint/Flow
Input Format Netflow-like Packet trace
Grain Fine grained Fine grained
Protocol Family P2P-TV Any
Rejection Criterion Threshold Train-based
Train set size Big (4000 smp.) Small (300 smp.)
Time Responsivened3eterministic(5sec)| Stochastidearly 80pkts)
Network Deploy Edge Edge/Backbone

the application protocol by inspecting packet-level dataif is a payload-based classi-
fier.

The first consequence of this different approach lies in gymevolume of informa-
tion needed for the classification. In particular, Abaclkesaas input just a measure-
ment of the traffic rate of the flows directed to an endpointerms of both bytes and
packets. Not only this represents an extremely small amafuntormation, but it could
also be gathered by a Netflow monitor, so that no packet trasedibe inspected by
the classification engine itself. On the other hand, Kisstmaesessary access packet
payload to compute its features. This constitutes a moreresipe operation, even if
only the first 12 bytes are sufficient to achieve a high clasgifin accuracy.

Despite the different input data, both classifiers work ahe-firained level, i.e.,
they can identify the specific application related to eactv femd not just the class
of applications (e.g., P2P-TV). This consideration mayegpmbvious for a payload-
based classifier such as Kiss, but it is one of the strengtfvatAs over other behavioral
classifiers which are usually capable only of a coarse gdattessification.

Clearly, Abacus pays the simplicity of its approach in teofgossible target traffic.
In fact its classification process relies on some specifipgmies of P2P-TV traffic (i.e.,
the steady download rate required by the application toideoa smooth video play-
back), which are really tied to this particular service. #os reason Abacus currently
cannot be applied to applications other than P2P-TV apjdics. On the contrary, Kiss
is more general, it makes no particular assumptions onrgetaraffic and can be ap-
plied to any protocol. Indeed, it successfully classifideeokinds of P2P applications,
from file-sharing (e.g., eDonkey) to P2P \VoIP (e.g., Skype)yell as traditional client-
server applications (e.g., DNS).

Another important distinguishing element is the rejectidterion. Abacus defines
an hypersphere for each target class and measures thecdistagach classified point
from the center of the associated hypersphere by means Bhtagacharyya formula.
Then, by employing a threshold-based rejection critergmint is label as “unknown”
when its distance from the center exceeds a given valueddd(iss exploits a multi-
class SVM model where all the classes, included the unknavenrepresented in the
training set. If this approach makes Kiss very flexible, tharacterization of the classes

Table 4. Analytical comparison of the resource requirements of thesifiers

Abacus Kiss
Memor.y 2F counters 2°G counters
allocation
EP_state = hash(IP,;, porty)
EP_state = hash(IPy, portg) forg = 1 to Gdo
Packet FL.state = EPstate. hash(IP,, ports) P, = payl oad[g]
; FLstate.pkts ++ EPstate. O g] [Py] ++
processing FL_state. bytes += pkt size end for
Tot. op. 2lup + 2sim (2G+L)lup + Gsim
EP_state = hash(IP,, portg) _ b
for all FL.state in EP.state. hash do E = ¢ 2° (preconputed)
pl loga(FLstate.pkts)] += 1 for g =1 to Gdo
bl logo(FLstate. bytes)] += 1 Crifgl =0
Feat end for for |‘:0102 do
€alure = count (keys(EP-stat e. hash)) Chi[g] +=) ,
extraction for all i =0 to B do (EPstate.Jg][i]-E)
pli] /=N end for
b[i] /=N Chi[g] /= E
end for end for
Tot. op. (4F+2B+1)lup + 2(F+B)com + 3Fsim |2°T1Glup + Geom + (3-2°+1)Gsim

lup=lookup, com=complex operation, sim=simple operation

can be critical especially for the unknown since it is impattthat the training set
contains samples from all possible protocols other thamaifget ones.

We also notice that there is an order of magnitude of diffeegn the size of the
training set used by the classifiers. In fact, we trained Abagith 4000 samples per
class (although in some tests we experimented the samepearioe even with smaller
sets) while Kiss, thanks to the combination of the discratiire power of both the
ChiSquare signatures and the SVM decision process, negd3@hsamples per class.

On the other hand, Kiss needs at least 80 packets generateddr directed to) an
endpoint in order to classify it. This may seem a strong cairgtbut results reported
in Sec. 4 actually show that the percentage of not suppadéittis negligible, at least
in terms of bytes. This is due to the adoption of the endpisftow label propagation
scheme, i.e. the propagation of the label of an “elephantV fmall the “mice” flows
of the same endpoint. With the exception of particular ttagbnditions, this labeling
technique can effectively bypass the constraint on the mumipackets.

Finally, for what concerns the network deployment, Abacasds all the traffic
received by the endpoint to characterize its behavior. dfoee, it is only effective
when placed at the edge of the network, where all traffic thieto an host transits.
Conversely, in the network core Abacus would likely see @portion of this traffic,
so gathering an incomplete representation of an endpolravier, which in turn could
result in an inaccurate classification. Kiss, instead, isemmobust with respect to the
deployment position. In fact, by inspecting packet paylaadan operate even on a
limited portion of the traffic generated by an endpoint, led that the requirement on
the minimum number of packets is satisfied.

Table 5.Numerical case study of the resource requirements of tissifilers

Abacus Kiss
Memory allocatio 320 bytes 384 bytes
Packet processin 2lup + 2sim 49]up + 24sim
Feature selectiofpl77lup + 96com + 120sim|768lup + 24com + 1176sim
Params values B=8, F=40 G=24, b=4

5.2 Computational Cost

To complete the classifiers comparison, we provide an aisatythe requirements in
terms of both memory occupation and computational cost. New a theoretical ap-
proach and calculate these metrics from the formal algorghecification. In this way,
our evaluation is independent from specific hardware platéoor code optimizations.
Tab. 4 compares the costs from an analytical point of viewlenini Tab. 5 there is a
numerical comparison based on a case study.

Memory footprint is mainly related to the data structuresdi® compute the statis-
tics. Kiss requires a table @ - 2° counters for each endpoint to collect the observed
frequencies employed in the chi-square computation. Feodgfault parameters, i.e.
G = 24 chunks ofb = 4 bits, each endpoint requires 384 counters. Abacus, instead
requires two counters for each flow related to an endpoirthetotal amount of mem-
ory is not fixed but it depends on the number of flows per endpdism an example,
Fig. 1-(a) reports, for the two operator traces, the CDF efrthmber of flows seen by
each endpoint in consecutive windows of 5 seconds, the liefiatation of the Abacus
time-window. It can be observed that the 90th percentil&@wtorst case is nearly 40
flows. By using this value as a worst case estimate of the nuoflflews for a generic
endpoint, we can say that- # Flows = 80 counters are required for each endpoint.
This value is very small compared to Kiss requirements bua fcomplete comparison
we also need to consider the counters dimension. As Kisswiseews of 80 packets,
its counters assume values in the inteféaB0] so single byte counters are sufficient.
Using the default parameters, this means 384 bytes for estgoit. Instead, the coun-
ters of Abacus do not have a specific interval so, using a waist scenario of 4 bytes
for each counter, we can say that 320 bytes are associateghaadpoint. In conclu-
sion, in the worst case, the two classifiers require a conpaeamount of memory but
on average Abacus requires less memory than Kiss.

Computational cost can be evaluated comparing three tés&soperations per-
formed on each packet, the operations needed to computégtiegigres and the op-
erations needed to classify them. Tab. 4 reports the pseudio @f the first two tasks
for both classifiers, specifying also the total amount ofraiens needed for each task.
The operations are divided in three categories and coregldsaparately as they have
different costsiup for memory lookup operationgpm for complex operations (i.e.,
floating point operationsim for simple operations (i.e., integer operations).

Let us first focus on the packet processing part, which pteseany constraints
from a practical point of view, as it should operate at lineexph In this phase, Aba-
cus needs 2 memory lookup operations, to access its intstmatures, and 2 integer

CDF

06 e I g
I e ><—><;>J2><>< L opb — é e
04 7 oo P07 - 04 A op07 =~ 7 1
L + ¥ joost -+ | /X, /7 joost - -+ -
+ d pplive ->- | L) T pplive ---%--- |
0.2 I }M sopcast | 02 ,——;—;g;;k/i%, E sopcast — X—
o Bl A EIOT | wants O 0 me=2i =0 L tvangs =B
1 10 100 0.1 1 10
Flows @ Ssec time @ 80pkt
CY (b)

Fig. 1. Cumulative distribution function of (a) number of flows perdpoint and (b) duration of
a 80 packet snapshot for the operator traces

increments per packet. Kiss, instead, ne2ds+ 1 = 49 lookup operations, half of
which are accesses to packet payload. Then, Kiss must cerfiinteger increments.
Since memory read operations are the most time consumimg, dur estimation we
can conclude that Abacus should be approximately 20 timgterfahan Kiss in the
packet processing phase.

The evaluation of the signature extraction process indgseambre complex. First of
all, since the number of flows associated to an endpoint ifixexd, the Abacus cost is
not deterministic but, like in the memory occupation case can consider 40 flows as
a worst case scenario. For the lookup operations, Cons@i&ri= 8, Abacus requires
a total of 177 operations, while Kiss needs 768 operatioas, iearly four times as
many. For the arithmetic operations, Abacus needs 96 flpgtint and 120 integer
operations, while Kiss needs 24 floating point and 1176 &rtegerations.

Abacus produces one signature every 5 seconds, while I§isatsires are processed
every 80 packets. To estimate the frequency of the Kiss lalon, in Fig. 1(b) we show
the CDF of the amount of time needed to collect 80 packetsrf@ralpoint. It can be
observed that, on average, a new signature is computed 2wagonds. This means
that Kiss performs the feature calculation more frequendy, it is more reactive and
possibly more accurate than Abacus but obviously also nes®urce consuming.

Finally, the complexity of the classification task dependste number of features
per signature, since both classifiers are based on a SVMidegsocess. The Kiss
signature is composed, by default, Gf = 24 features, while the Abacus signature
contains 16 features: also from this point of view Abacusegpg lighter than Kiss.

6 Conclusions

In this paper we compared two approaches to the classificafi®@2P-TV traffic. We
provided not only a quantitative evaluation of the algaritberformance by testing
them on a common set of traces, but also a more insightfuldésen of the differences
deriving from the two followed paradigms.

The algorithms proved to be comparable in terms of accurachassifying P2P-TV
applications, at least regarding the percentage of cdyreletssified bytes. Differences
emerged also when we compared the computational cost ofldksifers. With this
respect, Abacus outperforms Kiss, because of the simplithe features employed
to characterize the traffic. Conversely, Kiss is much moneega, as it can classify
other types of applications as well.

Our work is a first step in cross-evaluating the novel alpong proposed by the
research community in the field of traffic classification. Wewed how an innova-
tive behavioral method can be as accurate as a payload-basednd at the same
time lighter, so being a perfect candidate for scenariokh Wérd constraints in term
of computational resources. However, we also showed sanitations in its general
applicability, which we would like to address in our futurenk.

References

1. Moore, Andrew. W. and Papagiannaki, Konstantina: TowhedAccurate Identification of
Network Applications. In: Passive and Active Measurem@&#®N’05), Boston, MA, US
(March 2005)

2. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., IBatsos, M.: Is p2p dying or just
hiding? In: IEEE GLOBECOM '04., Dallas, Texas, US (2004)

3. Finamore, A., Mellia, M., Meo, M., Rossi, D.: KISS: Stotia$acket Inspection. In: Traffic
Measurement and Analysis (TMA) Workshop at IFIP Networki@g, Aachen, Germany
(May 2009)

4. Cascarano, N., Risso, F., Este, A., Gringoli, F., Saltiate, Finamore, A., Mellia, M.:
Comparing p2ptv traffic classifiers submitted to IEEE ICC201

5. Valenti, S., Rossi, D., Meo, M., Mellia, M., Bermolen, RAccurate, Fine-Grained Classifi-
cation of P2P-TV Applications by Simply Counting Packets: Traffic Measurement and
Analysis (TMA) Workshop at IFIP Networking '09, Aachen, Gany (May 2009)

6. Bernaille, L., Teixeira, R., Salamatian, K.: Early apption identification. In: Proc. of ACM
CoNEXT 2006, Lisbhoa, PT (December 2006)

7. Williams, N., Zander, S., Armitage, G.: A prelimanery foemance comparison of five
machine learning algorithms for practical ip traffic flow qoanison. ACM SIGCOMM
Comp. Comm. Re36(5) (2006) 7-15

8. Erman, J., Arlitt, M., Mahanti, A.: Traffic classificatiarsing clustering algorithms. In:
MineNet 06: Mining network data (MineNet) Workshop at ACMEIOMM '06, Pisa, Italy
(2006)

9. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: Blmelltilevel traffic classification in
the dark. SIGCOMM Comput. Commun. R&5(4) (2005) 229-240

10. lliofotou, M., Kim, H., Pappu, P., Faloutsos, M., Mitzeacher, M., Varghese, G.: Graph-
based p2p traffic classification at the internet backboneldth IEEE Global Internet Sym-
posium (G12009), Rio de Janeiro, Brazil (April 2009)

11. Salgarelli, L., Gringoli, F., Karagiannis, T.: Compyitraffic classifiers. ACM SIGCOMM
Comp. Comm. Rew7(3) (2007) 65-68

12. Nguyen, T.T.T., Armitage, G.: A survey of techniquesifaernet traffic classification using
machine learning. IEEE Communications Surveys & Tutorl@@) (2008) 56—76

13. Kim, H., Claffy, K., Fomenkov, M., Barman, D., Faloutsds., Lee, K.: Internet traffic
classification demystified: myths, caveats, and the bestipes. In: Proc. of ACM CoNEXT
2008, Madrid, Spain (2008)

14.

15.

16.

17.

18.
19.

Li, W., Canini, M., Moore, A.\W., Bolla, R.: Efficient agphtion identification and the tem-
poral and spatial stability of classification schema. Corapetworks53(6) (2009) 790—
809

Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: A Measment Study of a Large-Scale
P2P IPTV System. IEEE Transactions on Multimedia (Dec. 2007

Li, B., Qu, Y., Keung, Y., Xie, S., Lin, C., Liu, J., Zhang,: Inside the New Coolstreaming:
Principles, Measurements and Performance Implication$EEE INFOCOM '08, Phoenix,
AZ (April 2008)

Cristianini, N., Shawe-Taylor, J.: An introduction tagport Vector Machines and Other
Kernel-based Learning Methods. Cambridge University £idsw York, NY (1999)
Napa-Wineht t p: / / ww. napa- wi ne. eu/ .

Risso, F., Cascarano, N.: Diffinder availablehatt p: / / net group. polito.it/
research-projects/|7-traffic-classification.

