
DeSRTO: an effective algorithm for SRTO
detection in TCP connections

Antonio Barbuzzi, Gennaro Boggia, and Luigi Alfredo Grieco
email:{a.barbuzzi; g.boggia; a.grieco}@poliba.it

DEE - Politecnico di Bari - V. Orabona, 4 - 70125, Bari, Italy
Ph. +39 080 5963301; Fax +39 080 5963410

Abstract. Spurious Retransmission Timeouts in TCP connections have
been extensively studied in the scientific literature, particularly for their
relevance in cellular mobile networks. At the present, while several al-
gorithms have been conceived to identify them during the lifetime of a
TCP connection (e.g., Forward-RTO or Eifel), there is not any tool able
to accomplish the task with high accuracy by processing off-line traces.
The only off-line existing tool is designed to analyze a great amount of
traces taken from a single point of observation. In order to achieve a
higher accuracy, this paper proposes a new algorithm and a tool able to
identify Spurious Retransmission Timeouts in a TCP connection, using
the dumps of each peer of the connection. The main strengths of the
approach are the great accuracy and the absence of assumptions on the
characteristics of TCP protocol. In fact, except for rare cases that are
not classifiable with absolute certainty at all, the algorithm shows no am-
biguous nor erroneous detections. Moreover, the tool is also able to deal
with reordering, small windows, and other cases where competitors fail.
Our aim is to provide to the community a very reliable tool to: (i) test
the working behavior of cellular wireless networks, which are more prone
to Spurious Retransmission Timeouts with respect to other technolo-
gies; (ii) validate run-time Spurious Retransmission Timeout detection
algorithms.

1 Introduction

TCP congestion control [1,2,3] is fundamental to ensure Internet stability. Its
main rationale is to control the number of in-flight segments in a connection
(i.e., segments sent, but not yet acknowledged) using a sliding window mech-
anism. In particular, TCP sets an upper bound on the number of in-flights
segments via the congestion window (cwnd) variable. As well known, the value
of cwnd is progressively increased over the time to discover new available band-
width, until a congestion episode happens, i.e., 3 Duplicated Acknowledgements
(DUPACKs) are received or a Retransmission Timeout (RTO) expires. After a
congestion episode, cwnd is suddenly shrinked to avoid a network collapse. TCP
congestion control has demonstrated its robustness and effectiveness over the
last two decades, especially in wired networks.



Recently, the literature has questioned the effectiveness of the basic RTO
mechanism originally proposed in [1] and refined in [4]. Such a mechanism mea-
sures the Smoothed Round Trip Time (SRTT) and its standard deviation (DEV)
and then sets RTO = SRTT + 4DEV . The rationale is that, if the RTT ex-
hibits a stationary behavior, RTO can be considered as a safe upper bound
for the RTT. Unfortunately, in cellular mobile networks this is not ever true.
In fact, delay spikes due to retransmissions, fading, and handover can trigger
Spurious Retransmission Timeouts (SRTOs) that lead to unnecessary segment
retransmissions and useless reductions of the transmission rate [5,6].

Despite of the importance of SRTOs, there is not any tool able to accomplish
the task of properly identifying them with high accuracy by processing off-line
traces. The only off-line existing tool is designed to analyze a great amount
of traces taken from a single point of observation [7]. To bridge this gap, this
paper proposes a new algorithm and a tool able to Detect SRTOs (which will
be referred to as DeSRTO) in a TCP connection, using the dumps of each peer
of the connection. The main strengths of the approach are the great accuracy
and the absence of assumptions on the characteristics of TCP protocol. In fact,
except for rare cases that are not classifiable with absolute certainty at all as
SRTO, the algorithm shows no ambiguous nor erroneous detections. Moreover,
the tool is also able to deal with reordering, small windows, and other cases where
competitors fail. Our aim is to provide to the community a very reliable tool to:
(i) test the working behavior of cellular wireless networks, which are more prone
to Spurious Retransmission Timeouts with respect to other technologies (but it
is well suited also for any other kind of networks with traffic flows using TCP);
(ii) validate run-time Spurious Retransmission Timeout detection algorithms.
To provide a preliminary demonstration of the capabilities of DeSRTO, some
results derived by processing real traffic traces collected over a real 3G network
have been reported. Moreover, to test its effectiveness, a comparison with the
Vacirca detection tool [7] is reported.

The rest of the paper is organized as follows. In Sec. 2 a summary of related
works is reported. Sec. 3 describes our algorithm, reporting also some examples
on its behavior. Sec. 4 shows the experimental results. Finally, conclusions are
drawn in Sec. 5.

2 Related Works

So far, research on SRTOs has produced schemes that can be classified in to two
families: (i) real-time detection schemes for TCP stacks; (ii) off-line processing
tools for SRTO identification. The Eifel Detection [5], the F-RTO [6], and the
DSACK [8] schemes belong to the first family. Instead, the tool proposed in [7]
and the DeSRTO algorithm herein presented belong to the second family.

The goal of the Eifel detection algorithm [5] is to avoid the go-back-N re-
transmits that usually follows a spurious timeout. It exploits the information
provided by the TCP Timestamps option in order to distinguish if coming ACKs
are related to a retransmitted segment or not.



The algorithm described in [8] exploits DSACK (Duplicate Selective ACK)
informations to identify SRTOs. DSACK is a TCP extension used to report the
receipt of duplicate segments to the sender. The receipt of a duplicate segment
implies either the packet is replicated by the network, or both the original and
the retransmitted packet arrive at the receiver. If all retransmitted segments
are acknowledged and recognized as duplicated using DSACK information, the
algorithm can conclude that all retransmissions in the previous window of data
were spurious and no loss occurred.

The F-RTO algorithm [6] modifies the TCP behavior in response to RTOs: in
general terms, when a RTO expires, F-RTO retransmits the first unacknowledged
segment and waits for subsequent ACKs. If it receives an acknowledgment for a
segment that was not retransmitted due to the timeout, the F-RTO algorithm
declares a spurious timeout.

Possible responses to a spurious timeout are specified in [9], namely the Eifel
Response Algorithm. Basically, three actions are specified: (i) the TCP sender
sends new data instead of retransmitting further segments; (ii) the TCP stack
tries to reverse the congestion control state prior to the SRTO; (iii) the RTO
estimator is re-initialized by taking in account the round-trip time spike that
caused the SRTO (a slightly different approach has been also proposed in [10]).

To the best of our knowledge, till now, the only SRTO detection algorithm
aimed at the analysis of collected TCP traces is the one proposed by Vacirca
et al. in [7]. This algorithm is conceived to process a large amount of traces
from different TCP connections. Such traces are collected by a single monitoring
interface, placed in the middle of a path traversed by many connections. The
design philosophy of the algorithm targets strict constraints on execution speed
and simplicity. Anyway, being the algorithm based on a monitoring point placed
in the middle of the network, it cannot exploit fundamental information avail-
able on dumps collected at connection endpoints that could improve estimation
accuracy. The rationale of the algorithm of Vacirca is to analyze ACKs stream to
identify SRTOs. In case of a Normal RTO (NRTO), a loss involves the transmis-
sion of duplicate ACKs by the TCP data receiver, that indicates the presence of
a hole in the TCP data stream. On the contrary, in case of a SRTO, no duplicate
ACKs are expected, since there is no loss. It is well known that this algorithm
does not work properly in the following conditions: (i) packet loss before the
monitoring interface; (ii) presence of packet reordering; (iii) small windows; (iv)
no segment is sent between the original transmission that caused the RTO and
its first retransmission; (v) loss of all the segments transmitted between the orig-
inal transmission that caused the RTO and its first retransmission; (vi) loss of
all ACKs.

Some of these cases lead to erroneous conclusions, while others lead to ambi-
guity. Furthermore, the absence of packet reordering is a fundamental hypothesis
for the validity of the Vacirca detection scheme. Our algorithm is instead aimed
to the analysis of a single TCP flow, without making any assumption on the
traffic characteristic.



3 Spurious Timeout Identification Algorithm: DeSRTO

In this section, we will examine closely the SRTO concept, reporting some ex-
ample of SRTOs. Then, we will explain our algorithm.

3.1 What is a SRTO?

As well known, every time a data packet is sent, TCP starts a timer and waits, till
its expiration, for a feedback indicating the delivery of the segment. The length
of this timer is just the retransmission timeout, i.e., the RTO. The expiration of
a RTO timeout is interpreted by the TCP as an indication of packet losses. The
computation of RTO value is specified in [4]; it is based on the estimated RTT
and its variance. The proper setting of the RTO is a tricky operation: if it is too
long, TCP would waste a lot of time before it realizes that a segment is lost; if it
is too short, unnecessary segments would be retransmitted, with a useless waste
of bandwidth.

As already stated, it has been shown that the RTO estimation can be unreli-
able in some cases, especially when connections cross through cellular networks.
Therefore, retransmission procedure can be unnecessarily triggered, even in ab-
sence of packet loss. The RFC 3522 names these RTOs as spurious (i.e., there
is a SRTO), and defines them as follow: a timeout is considered spurious if it
would have been avoided had the sender waited longer for an acknowledgment to
arrive.

Let us clarify the SRTO concept through an example. In Fig. 1(a), it is re-
ported a borderline case, representing the simplest possible case of SRTO. The
segment in the packet p1 was sent and received successfully, like the relative ac-
knowledgment, i.e., the packet p3. However, p3 arrived after the RTO expiration;
therefore, the sender uselessly retransmitted in packet p2 the data contained in
the payload of packet p1. Note that if the sender had waited longer, it would
have received the acknowledgment contained in packet p3. Thus, as stated by
the definition, here we are in presence of a SRTO.

The presented example considers a very simple scenario with a small TCP
transmission window. A more complex case is reported in Fig. 1(b): the first ACK
segment (the one with ack number 100) is lost, but since ACKs are cumulative,
data contained in packet p1 can be acknowledged by any of the subsequent
ACKs. Therefore, the correct application of SRTO definition requires to check
that at least one ACK (among the ones sent between the reception of p1 and the
reception of the retransmitted segment) is delivered successfully to the sender.

3.2 DeSRTO

DeSRTO is an algorithm we developed to detect Spurious RTOs. The main
difference between its counterparts is that it uses both TCP peer dumps, a fea-
ture that enhances the knowledge on the network behavior during a RTO event.
DeSRTO discriminates SRTOs from NRTOs according to the RFC 3522, by



p
2

Sender

Receiver

RTO

S
 1

:1
0
0

ack 100

S
 1

:1
0
0

ack 100

p
1

{ RcvdPacketList

p
3

(a) A simple example of Spurious RTO.

p
2

Sender

Receiver

RTO

S
 1

:1
0
0

S
 1

0
0
:2

0
0

S
 2

0
0
:3

0
0

ack 100

ack 200
ack 300

S
 1

:1
0
0

ack 300

p
1

{ RcvdPacketList
p

3

x
t

RTO

R

t
RTO

S

(b) A more complicated example of Spurious RTO.

Fig. 1. Spurious RTO examples.

reconstructing the journey of the TCP segments involved into the RTO man-
agement.

For a specific RTO event, the algorithm needs to associate a packet containing
a TCP segment with the packet(s) containing the relative acknowledgment that
was(were) sent in reply to the segment. Note that the ACK number refers to
a flow of data and not to a specific received packet. Instead, an IP datagram
containing a TCP ACK is triggered by a specific TCP segment and thus can
be associated to it. Hence, in the sequel, we will adopt the expression “packet
A that acknowledges packet B” referring to the specific IP datagram A that
contains a TCP ACK related to the reception of packet B. It is important to
highlight that the algorithm needs unambiguous couple of packets on the sender
and receiver dumps. Since we cannot rely only on the sequence number or on
the ACK number of TCP segments, we make use of the identification field in
the IP header, that, according to [11], is used to distinguish the fragments of
one datagram from those of another.

Let us clarify the behavior of DeSRTO applying it to the SRTO cases de-
scribed in the previous section. We will start from the simplest scenario in Fig.
1(a). In this instance, DeSRTO would proceed according to the following steps:

1. Identify the packet that caused the RTO (p1) on the sender dump.
2. Find packet p1 in the receiver dump.
3. If p1 is lost, the RTO is declared Normal.



4. Otherwise, find the ACK “associated” to p1 on the receiver dump (namely
p3). This packet should exist because it is transmitted by the receiver.

5. Find the packet p3 on the sender dump.
6. If p3 is not present in the sender dump (that is, it was lost), the RTO is

declared Normal, otherwise it is declared as Spurious.

Now, let us analyze the more complicated case in Fig. 1(b). Of course, the
loss of only the first ACK is not enough to come to a conclusion. Therefore, the
algorithm would check if at least one ACK (sent between the reception of p1
and the instant tRRTO of the reception of the retransmitted packet) was delivered
correctly to the sender.

The aim of our algorithm is to try to detect all types of SRTOs. Thus,
through a deeper analysis of the methodology needed to distinguish all the pos-
sible RTO types, we realized that the definition used by RFC 3522 does not
allow the practical identification of all possible RTO episodes. In fact, according
to the definition, in order to understand what would happened if we had “waited
longer”, it is possible to check what the TCP data sender would have done till
the RTO event tSRTO, and what the TCP data receiver would have done till the
reception of the first retransmission triggered by the RTO event, tRRTO. Every-
thing happens after these two instants depends also on how the RTO event has
been handled. From tRRTO on, the storyline diverges, and the check of the “what
if” scenarios can result in significantly different outcomes, since the consequences
of the RTO management cannot be really undo: it influences the following events
in an unforeseeable way.

We can check what would have happened if we “waited longer” with certainty
as long as we do not need to undo the TCP stack management of the RTO event.
To deal also with these uncertain cases, we define the concept of Butterfly-RTO
as follows: a Butterfly-RTO is a RTO whose identification as SRTO or NRTO
would require the check of packets at the receiver side after the instant tRRTO.

In order to highlight the complexity involved in dealing with a Butterfly-
RTO, we can consider the RTO example in Fig. 2. Packet p1 is transmitted,
but the RTO timer expires before the reception of any ACKs related to it (the
ACK relative to packet p1 is lost). Packet p2 is the retransmitted packet, with
the same sequence number interval as p1. Note that the reception of packet
p2 marks the instant tRRTO, i.e., the instant of the reception by the sender of
the retransmitted packet. The following packet (the one with sequence numbers
100 : 200) is lost whereas packet pB (the one with sequence numbers 200 : 300) is
delivered correctly. But, due to reordering, it arrives after the instant tRRTO and,
consequently, p3, the packet that acknowledges pB , is sent after t

R
RTO. Apparently

the case depicted in Fig. 2 is a Spurious RTO, because, if we had waited for p3
to arrive, we would not have sent the retransmission p2.

Examining more carefully the situation, we should note that the story of
packet pB could also be different if packet p2 would have not been never trans-
mitted. In other terms, the storylines of p2 and pB are coupled and there is no
way to undo the effects of RTO management with absolute certainty. To further
stress the concept, we remark that, if the TCP delayed ACK option is enabled,



p
2

Sender

Receiver

S
 1

:1
0
0

S
 1

0
0
:2

0
0

S
 2

0
0
:3

0
0

a
ck 1

0
0 ack 100

S
 1

:1
0
0

p
1 p

3

x

x
p

B

t
RTO

S

t
RTO

R

RTO

Fig. 2. An example of Butterfly RTO.

the time instant at which the ACK p3 is transmitted depends also on p2 and not
only on pB . Finally, TCP implementations running at different hosts often im-
plements RFC specifications in slightly different ways, thus making even worse
the problem.

Actually, Butterfly-RTOs are negligible in normal network conditions, since
reordering is rare and the probability of joint RTO and packet reordering events
(needed for the Butterfly-RTO occurrence) is very low if the RTO and reordering
events are uncorrelated. Anyway, note that possible network malfunctions during
handover or channel management (due, for example, to bugs or incorrect settings
in network devices) could systematically cause the scenario happening.

To conclude this discussion, we describe how our algorithm tries to solve
and/or classify the uncertain cases. If no reordering happens, DeSRTO searches
for all ACKs that acknowledge p1 and have been transmitted within tRRTO. If
at least one of these ACKs has been received by the sender, then the RTO is
classified as spurious. Otherwise, the RTO is normal.

If a reordering happens and none of the ACKs transmitted within tRRTO has
been received, then the RTO is classified as Butterfly.

In Fig. 3, it is shown a case taken from [7], where the detection with the
Vacirca tool would fails, as stated in [7] itself. The dashed line indicates the
point where the monitoring interface used by the Vacirca algorithm is placed,
and the sequence of packet passing through the line is the one seen by such a
detection tool. In this case, the network experiences packet reordering, specifi-
cally packet with sequence numbers 100 : 200 arrives after packet with sequence
numbers 200 : 300. As reported in [7], the Vacirca tool will erroneously classify
the SRTO as normal. In fact, the algorithm will see an ACK (the packet with
ACK number 300) after the retransmission of p1 and p3; therefore, it deduces
that packet p3 fills the hole in the data sequence. Our tool, instead, is not af-
fected by packet reordering. In fact, by following the same steps (1 - 6) before
outlined to explain the simpler SRTO example in Fig. 1(a), it is straightforward
to show that DeSRTO is able to classify the RTO as spurious.

It is worth to note that the four examples reported in Figs. 1-3 have been
pictured to provide an idea of the extreme complexity associated to SRTO detec-
tion. More SRTO scenarios can happen, depending on reordering, loss of data



p
2

Sender

Receiver

RTO

S
 1

:1
0
0

S
 1

0
0
:2

0
0

S
 2

0
0
:3

0
0

a
c
k
 1

0
0 S

 3
0
0
:4

0
0

p
1

{ RcvdPacketList

p3

ack 100

ack 300

S
 1

0
0
:2

0
0

Vacirca's

Monitoring

Interface

Fig. 3. Example of SRTO with reordering: the Vacirca tool fails considering it as
normal.

packet, and so on. The details on DeSRTO behavior in a general setting are
presented in the pseudocode description of the algorithm (see Sec. 3.3).

3.3 The algorithm in detail: the pseudocode

Hereafter, we discuss the DeSRTO pseudocode reported in Algotithm 1. We
continue to refer to Fig. 1(b) all over the text. As general consideration, we
recall that to unambiguously couple packets on the sender and receiver dumps,
we use the identification field of the IP header [11]. To simplify the notation, we
use the following conventional definitions:

SndDump is the dump of the TCP flow at the sender side;
RcvDump is the dump of the TCP flow at the receiver side;
RTOList is the list of all the generated RTOs.

Below, in the step-by-step description of the algorithm, numbers at the be-
ginning of each line refer to the line numbers in the pseudocode of Alg. 1. This
description will give further insight in the comprehension of DeSRTO behavior.

1:3 Initially, RTOList contains a list of RTOs, with timestamps of each RTO
and the sequence number of the TCP segment that caused it. From these
information, we can find in the SndDump the packet p1 (see fig. 1(b)) that
caused the RTO. The second step requires to find p1 also on the receiver side
in RcvDump.

4:5 If packet p1 is lost, that is, if it is not present in the RcvDump, the RTO
is declared Normal. Note that TCP “fast retransmit” is comprised in this
case.

6:13 It is found the first retransmission of the segment encapsulated in the p1
datagram, straight after the RTO event, namely p2. The packet p2 is also
found at the receiver side. If p2 is not present on the receiver dump, i.e., it
has been lost, the algorithm looks for the first packet transmitted after p2
that successfully arrives at the receiver.



14:21 In SndDump, all the packets sent between the transmission of p1 and the
transmission of p2 are found. They are stored in the list SentPktsList. Then,
DeSRTO stores in the list RcvdPktsList all the packets in SentPktsList
that have been successfully received (this step requires an inspection of
RcvDump). The first and the last packets in RcvdPktsList are called pm
and pM , respectively. We will refer to tm as the reception instant of pm and
to tM as the transmission time instant of the first ACK transmitted after
the reception of pM . Note that pm and pM could be different from p1 and
p2, respectively, in case of packet reordering.

22:27 Search on RcvDump, in the time interval [tm, tM ], all the ACKs that
acknowledged p1. Found ACKs are saved in the list AckList, according to
their transmission order.

28:43 For each ACK saved inAckList, the algorithm checks if it was successfully
received by the sender. The search stops as soon as the first ACK successfully
received is found. If a received ACK is found, two cases are considered:
1. the ACK was sent before tRRTO.
2. the ACK was sent after tRRTO

In the first case, the sender received an ACK for p1 after the RTO expiration,
therefore the RTO is declared Spurious.
In the second case, we have a Butterfly-RTO.
Note that we account also for reordering of the ACKs on the reverse path;
therefore, the check on the ACK packets is done in chronological order,
starting from the first sent ACK packet till the last one.

44:48 If none of ACKs in AckList has been received by the sender, i.e., an
entire window of ACKs is lost, two cases are considered:
– if the the greatest timestamp of packets in AckList is smaller than tRRTO

(i.e., tp2), the RTO is declared Normal,
– otherwise it is declared Butterfly.

3.4 Implementation Details

To verify the effectiveness of our algorithm, DeSRTO has been written in python
programming language. The realized tool implements exactly the pseudocode de-
scribed above (the actual version of the tool is v1.0-beta and it is freely available
at svn://telematics.poliba.it/desrto/tags/desrto_v1).

The DeSRTO tool takes in input a list of RTOs (RTOList in the pseu-
docode), with timestamp and sequence number and the dumps related to the
TCP connection of two peers. The list of RTOs is generated using a Linux kernel
patch, included in the repository, that simply logs the sequence numbers and the
timestamps of each RTO. Of course, other methods can be used to have a list of
RTOs, such as a simple check of the presence of duplicate transmission without
3-DUPACK. We have planned to implement it as an option in the near future.

The dumps of each peer can be truncated in order to discard the TCP pay-
load. Of course, DeSRTO requires that no packets are discarded by the kernel.
In fact, if packets we look for are not found, the analysis would be wrong. An



Algorithm 1 Pseudocode of DeSRTO

1: for each rto in RTOList do
2: FIND the packet p1 that causes the rto in SndDump
3: FIND packet p1 in RcvDump
4: if p1 is Lost then
5: rto← NRTO
6: else
7: FIND packet p2 in SndDump, the first retransmission of packet p1
8: FIND p2 in RcvDump
9: while p2 is Lost do
10: FIND tmp the first packet transmitted after p2 in SndDump
11: p2 ← tmp
12: FIND p2 in RcvDump
13: end while
14: SET tretr TO the timestamp of p2 on RcvDump
15: GET all sent packets between p1 and p2 in SndDump, including p1 and not

p2
16: FIND the corresponding received packets in RcvDump
17: STORE founded packets in RcvdPktsList
18: SET pm TO the first packet in RcvdPktsList in chronological order
19: SET tm TO the timestamp of pm
20: SET pM TO the last packet in RcvdPktsList in chronological order
21: SET tM TO the timestamp of the first ACK transmitted after pM
22: for EACH sent packet pa in RcvDump FROM tm TO tM do
23: if pa acknowledges p1 then
24: STORE pa IN AckList
25: end if
26: end for
27: SET tmax to the greatest timestamp of the packets in AckList
28: SET tp2 TO the timestamp of p2 on RcvDump
29: SET ACK FOUND TO False
30: for EACH ack packet a in AckList do
31: if ACK FOUND = False then
32: FIND packet pa in SndDump
33: if pa is not LOST then
34: SET ACK FOUND TO True
35: SET t TO the timestamp of pa on RcvDump
36: if t3 > tp2 then
37: rto← ButterflyRTO
38: else
39: rto← SRTO
40: end if
41: end if
42: end if
43: end for
44: if ACK FOUND = False and tmax > tp2 then
45: rto← ButterflyRTO
46: else if ACK FOUND = False then
47: rto← NRTO
48: end if
49: end if
50: end for



option to deal with flows that go through a NAT has been implemented. The
aim of each option is to analyze most of the cases in background, without the
presence of an operator.

4 Experimental Results

To test the effectiveness of the tool and its performance, we have considered a
series of TCP flows generated using iperf, a commonly used network testing tool
that can create TCP data streams (http://dast.nlanr.net/iperf/), in a real 3.5G
cellular network (a UMTS network with the HSPA protocol) with concurrent real
traffic . The testbed is presented in Fig. 4. There are two machine equipped with
a Linux kernel patched with the Web100 patch (http://www.web100.org/), a
tool that implements TCP instruments, defined in [12], able to log internal TCP
kernel status, and with a kernel patch we developed that logs all the RTO events
(see Sec. 3.4). The developed patch has been tested comparing the reported
timeouts against Web100 output.

3G core

network
Internet

Mobile Host Wired Host

Fig. 4. Experimental testbed.

The first PC is connected to the Internet through a wired connection, while
the second one is equipped with a UMTS (3.5G) card and it is connected to
the cellular network. We have generated a series of one hour greedy long flows
between the two machines using iperf. We have conducted several experiments,
with flows originating from both the machines, in order to test either the direc-
tions of the connection. The average transfer rate was 791 kbits/sec in download
and 279 kbits/sec in upload. No experiments experienced packet reordering.

In the download case, where the UMTS equipped machine receives data, the
number of detected SRTOs is negligible also due to the low number of RTOs
(actually most RTOs are due to retransmission of SYN packets); whereas in the
upload case, the SRTOs are more common, even if not prevalent. This behavior
was expected due to the asymmetry between uplink and downlink in cellular



networks (downlink usually provides higher bandwidth, higher reliability, and
smaller delays with respect to uplink [13]).

Tabs. 1 and 2 show the number of NRTOs and SRTOs detected by DeSRTO
and by the Vacirca tool in the upload and in the download cases, respectively.
Note that there are no Butterfly RTOs, since no reordering was experienced in
performed experiments.

DeSRTO Results Vacirca tool results

N. SRTO NRTO %
SRTO

SRTO NRTO Am-
biguous

%
SRTO

% Am-
biguous

1 3 23 13,0% 5 535 4 0,9% 0,7%
2 5 27 18,5% 5 536 7 0,9% 1,3%
3 5 231 2,2% 15 711 31 2,0% 4,1%
4 4 305 1,3% 23 784 43 2,7% 5,1%
5 7 151 4,6% 24 637 19 3,5% 2,8%
6 5 48 10,4% 10 502 9 1,9% 1,7%
7 4 343 1,2% 28 749 69 3,3% 8,2%
8 3 83 3,6% 4 636 1619 0,2% 71,7%
9 2 9 22,2% 3 441 2 0,7% 0,4%
10 4 108 3,7% 9 629 22 1,4% 3,3%
11 1 2 50,0% 1 348 0 0,3% 0,0%

TOT 43 1330 3,2% 127 6508 1825 1,5% 21,6%

Table 1. Results reported by Vacirca Tool and DeSRTO for the upload case.

To validate the algorithm, we have manually inspected all the RTOs expired
during the experiments and we have verified their correspondence with the ones
revealed by DeSRTO. It is worth to highlight that no false positive or negative
cases were found by DeSRTO. It was an expected results, since the algorithm
behavior follows the human operational procedure to find SRTO.

To validate its own algorithm, [7] uses a patched kernel that logs the timeout
sequence numbers on the sender side and, on the receiver side, logs the hole
in the sequence number space left by the reception of an out-of-order segment.
In that paper, it is claimed that an out-of-order segment point out a loss, i.e.,
a NRTO, and, therefore, all the remaining RTOs are spurious. Note that this
technique is more accurate that the use of the Vacirca’s tool, but it is not free
from errors. In fact, besides the intuitive failure in case of reordering, where
an out-of-order segments is not a lost packet, this validation technique does
not consider RTOs due to lost ACKs. In fact, in case a whole ACK window is
lost, no hole is logged on the receiver, and then a NRTO is wrongly believed to
be spurious. Therefore, we think that the validation technique used by [7] was
unfeasible for our algorithm; in fact, our algorithm claims to work even with
cases where the validation technique used by [7] fails. Thus, the only possible
validation technique is the manual inspection of all RTOs.



DeSRTO Results Vacirca tool results

N. SRTO NRTO %
SRTO

SRTO NRTO Am-
biguous

%
SRTO

% Am-
biguous

1 1 0 100,0% 0 11 0 0,0% 0,0%
2 2 0 100,0% 0 12 0 0,0% 0,0%
3 1 0 100,0% 0 18 0 0,0% 0,0%
4 2 0 100,0% 1 65 0 1,5% 0,0%
5 1 0 100,0% 0 10 0 0,0% 0,0%
6 1 0 100,0% 0 8 0 0,0% 0,0%
7 1 0 100,0% 0 10 0 0,0% 0,0%
8 1 0 100,0% 0 8 0 0,0% 0,0%
9 1 0 100,0% 0 13 0 0,0% 0,0%
10 1 0 100,0% 0 3 0 0,0% 0,0%
11 1 0 100,0% 0 6 0 0,0% 0,0%

TOT 13 0 100,0% 1 164 0 0,6% 0,0%

Table 2. Results reported by Vacirca Tool and DeSRTO for the download case.

Even if Vacirca tool and DeSRTO are designed with different targets, a work-
ing comparison between the two tools is mandatory, although some differences in
results are expected. For this purpose, we used an implementation of the Vacirca
tool available (http://ccr.sigcomm.org/online/?q=node/220) as a patch for tcp-
trace v.6.6.7. The algorithm was applied using the traces captured on the sender
side (the Ethernet interface in case of download, the UMTS interface in case of
upload). Even if the location of the monitoring interface is unusual (it is not
in the middle of the path), the placement is correct, since the only assumption
done in [7] is that no loss is present between the sender side and the monitoring
interface. The obtained results are reported in Tabs. 1 and 2. The comparison
shows lots of differences. The number of RTOs detected by the Vacirca tool is
substantially different from the ones reported by our kernel patch or, equally, by
Web100. On average, the Vacirca patched version of tcptrace reports a number of
RTOs about 6 times greater that the ones reported by the kernel, with peaks of
100 times. Instead, the number of SRTOs is more similar between the two tools,
and, even if the results are significantly different, in some cases the reported
values are comparable. It is worth to highlight that sometimes the number of
ambiguous RTOs reported by the Vacirca tools is very high, although no packet
reordering was experimented on the network in any experiments. Unfortunately,
we were not able to make any reliable hypothesis on the causes of results ob-
tained by the Vacirca tool. We found some issues in the use of such a tool and
details about these problems can be found in [14].

5 Conclusions

In this paper, the new algorithmDeSRTO to find Spurious Retransmission Time-
outs in TCP connections has been developed. Several examples have been re-



ported to illustrate its behavior in the presence of packet reordering, small win-
dows, and other cases where competitors fail. Except for rare cases that are not
classifiable with absolute certainty at all, the algorithm shows no ambiguous nor
erroneous detections. Moreover, the effectiveness of the proposed algorithm has
been highlighted with some results of its application on TCP traces collected
in a real 3.5G cellular network and comparing its performance with respect to
another detection tool available in literature. Future work will illustrate the ap-
plication of DeSRTO to data traces in order to analyze the presence of SRTOs
and their impact in several network environments.

Acknowledgement

Authors want to thank Dr. F. Ricciato and its team at FTW (Vienna) for sugges-
tions and the valuable support during this work, which was funded by projects
PS-121 and DIPIS (Apulia Region, Italy) as well as supported by TMA-COST
action IC0703.

References

1. Jacobson, V.: Congestion avoidance and control. SIGCOMM Comput. Commun.
Rev. 18(4) (August 1988) 314–329

2. Allman, M., Paxson, V., Stevens, W.: RFC 2581: TCP congestion control (1999)
3. Floyd, S., Henderson, T., Gurtov, A.: RFC 3782: The NewReno modification to

TCP’s fast recovery algorithm (2004)
4. Paxson, V., Allman, M.: Computing TCP’s retransmission timer (2000)
5. Ludwig, R., Meyer, M.: The Eifel detection algorithm for TCP. RFC 3522 (Ex-

perimental) (April 2003)
6. Sarolahti, P., Kojo, M.: Forward RTO-Recovery (F-RTO): An algorithm for de-

tecting spurious retransmission timeouts with TCP and the stream control trans-
mission protocol (SCTP). RFC 4138 (Experimental) (August 2005)

7. Vacirca, F., Ziegler, T., Hasenleithner, E.: An algorithm to detect TCP spurious
timeouts and its application to operational UMTS/GPRS networks. Comput.
Netw. 50(16) (2006) 2981–3001

8. Blanton, E., Allman, M.: Using TCP duplicate selective acknowledgement
(DSACKs) and stream control transmission protocol (SCTP) duplicate transmis-
sion sequence numbers (TSNs) to detect spurious retransmissions. RFC 3708 (Ex-
perimental) (February 2004)

9. Ludwig, R., Gurtov, A.: The eifel response algorithm for TCP. RFC 4015 (Pro-
posed Standard) (February 2005)

10. Blanton, E., Allman, M.: Using spurious retransmissions to adapt the retransmis-
sion timeout (July 2007)

11. Postel, J.B.: Internet protocol. Internet RFC 791 (September 1981)
12. Mathis, M., Heffner, J., Raghunarayan, R.: TCP extended statistics MIB. RFC

4898 (Proposed Standard) (May 2007)
13. Bannister, J., Mather, P., Coope, S.: Convergence Technologies for 3G Networks:

IP, UMTS, EGPRS and ATM. John Wiley & Sons (2004)
14. Barbuzzi, A.: Comparison measures between desrto and vacirca tool. Technical

report (2009) available at http://telematics.poliba.it/DeSRTO tech rep.pdf.


