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Abstract. The paper describes the EmPath tool that was designed to
emulate packet transfer characteristics as delays and losses in IP net-
work. The main innovation of this tool is its ability to emulate packet
stream transfer while maintaining packet integrity, packet delay and loss
distribution and correlation. In this method, we decide about the fate of
new packet (delay and loss) by using the conditional probability distri-
butions depending on the transmission characteristics of the last packet.
For this purpose, we build a Markov model with transition probabilities
calculated on the basis of the measured packet traces. The EmPath tool
was implemented as a module of the Linux kernel and its capabilities
were examined in the testbed environment. In the paper, we show some
results illustrating the effectiveness of EmPath tool.
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1 Introduction

Network emulators are attractive tools for supporting design, validation and
testing of protocols and applications. They aim to provide a single node (or a
set of nodes) with ability to introduce the packet transfer characteristics as they
would be observed in a live network. Therefore, the network emulators are often
regarded as a “network in a box” solution [1]. The key issue during the design of
the network emulator is the method for representation of the network behavior.
Among the realizations of emulators we recognize two main techniques: (1) the
real-time simulation, where emulator simulates the network to get appropriate
treatment of packets, e.g., as proposed in [2, 3], or (2) the model based emula-
tion, where emulator enforces the delay, loss or duplication of packets using a
model of the network behavior; the parameters for the model come from mea-
surements, simulations or analysis. We focus on model based emulation because
it is regarded to be scalable even for large networks and high link speeds.

One of the first widely used emulators was dummynet, which design and
features were presented in [4]. Its main objective was the evaluation of TCP
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performance with regard to the limited bit rate, constant propagation delay
and packet losses. This concept was further investigated by several authors,
e.g., in [5, 6], leading to implementation NIST Net [1] and NetEm [7] tools for
Linux kernel versions 2.4 and 2.6, respectively. Both of the tools model the
network impairment as a set of independent processes related to packet transfer
delays, packet losses, packet reordering and duplication. Due to the assumed
independence, they do not maintain the integrity of transferred packet streams
nor maintain the autocorrelation within packet transfer delay process or within
packet loss process. Moreover, they lack any cross-correlation between delay and
loss generation processes.

On the other hand, the studies of packet transfer characteristics in the Inter-
net, e.g., as these presented in [8–11], point out the significant dependencies in
the Internet traffic that results in strong correlation between delays and losses
experienced by transferred packets, as well as, the long rage dependency. This
effect is especially visible for packets sent in a sequence with small inter-packet
gaps. Furthermore, the autoregression analysis of Internet traffic, which was
performed in [10], suggests that the transfer delay of given packet strongly char-
acterizes the transfer delay of the consecutive one.

The constraints of the NetEm tool, which we briefly presented above, are
a topic of more detailed discussion in section 2. Following those limitations we
formulate the requirements for the design of a new emulation method. In our
method, named EmPath, the delays and losses experienced by transferred pack-
ets are modeled as a Markov process. However there are also solutions that use
Markovian description for this purpose, e.g., in [12] and [13], our model correlates
both the delay and loss processes into one solution. Moreover, our approach uses
multiple transition matrices, where each of them is conditioned on the status
of the proceeding packet. Contrary to previous works, we do not try to fit the
transition matrices using linear programming optimization. We derive necessary
conditional probabilities from the delay traces measured in a live network by
sending the probing packets with small inter-packets gaps.

Notice that the correlation depends on the duration of inter-packets gap.
Therefore, for each incoming packet we observe its inter-packet gap and then
we calculate a number of steps over the transition matrix; the number of steps
depends on the inter-packet gap. Finally, we implemented this emulation method
as an open source tool for the Linux kernel with version 2.6.

The paper is structured as follows: in section 2, we recall the concept of
network emulation and we discuss the requirements for useful emulators. Then,
we analyze the NetEm tool and we show its capabilities and limitations. After
that, in section 3, we present the proposed emulation algorithm that is based on
the Markov model and we focus on implementation issues. In the next section,
we show results of exemplary experiments that show performance of our tool.
Finally, section 5 summarizes the paper and gives a brief outline of further works.
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Fig. 1. The concept of network emulation.

2 The problem statement

In this section we recall the concept of network emulation and present its ap-
plications for experimentally driven research. Then, we discuss requirements for
designing a network emulator. From this point of view, we study the effectiveness
of widely used NetEm tool [7]. Our experiments aim to identify NetEm capabil-
ities and limitations. The obtained results motivate us to design and implement
the EmPath emulation tool.

2.1 The concept of network emulation

The concept of network emulation assumes that instead of performing experi-
ments in a live network, we measure packet transfer characteristics offered in the
network, and on that basis, we synthetically reproduce the packet transfer pro-
cess in a single device, called the network emulator. As illustrated in Fig. 1, the
network emulator should statistically provide the same values of packet transfer
delay, delay variation, packet loss and correlation between consecutive packets
as in a live network. Therefore, in principle, there should be no difference if an
incoming packet is served by network or by emulator.

The network emulator is regarded as a convenient tool for supporting exper-
imental driven research, prototype testing and designing of new protocols [14].
It may be treated as a complementary approach for testing real code in “semi-
synthetic” environment [1]. The key advantages of network emulation comparing
to simulation techniques and network trails are the following. First, the network
emulator allows for testing of prototype implementations (real code and physical
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equipment) with theirs software or hardware limitations. Second, the network
emulator allows for repeating tests under the same network conditions, what
is practically impossible in the case of live network trials. Last but not least,
the network emulator simplifies the tests in complex network scenarios since it
reproduces end-to-end characteristics without modeling details of network ele-
ments. In addition, lab environment does not need to have the access to a live
network.

On the other hand, the network emulator is not a perfect solution, because it
just follows the network behavior that was observed in the past. This is usually
performed by gathering packet traces that should be representative for given
experiment. Therefore, the collection of packet traces is a crucial issue. These
packet traces may be obtained from live network, from testbed environment or
even from simulation experiments.

As we mentioned above, the network emulator requires a method for accurate
replication of the packet transfer process. The method should statistically assure
the same service of packets as in the case that they would be handled in the
network; nevertheless, one must define measurable features, which can be used
for evaluation of emulator’s effectiveness. In this paper, we consider the following
conditions:

1. the emulator should provide the same probability distribution of packet
transfer delay and packet loss as it was observed in the network. In this
way, the network emulator provides accurate values of IP performance met-
rics, e.g., IP packet transfer delay (IPTD), IP packet delay variation (IPDV),
IP packet loss ratio (IPLR), defined in [15].

2. the emulator should introduce similar autocorrelation of the packet transfer
delay process and the packet loss process. The autocorrelation is an impor-
tant factor that shows how the emulator represents the dependencies between
samples in a given realization of the process. Our analysis is focused on the
correlograms (autocorrelation plots).

3. the emulator should allow for maintaining cross-correlation between emu-
lated processes as it was experienced by packets in the network. This fea-
ture shows how the method captures dependencies between different random
processes, i.e., between packet delay process and packet loss processes. We
measure the cross-correlation by correlation coefficient [16].

4. the emulator should maintain the packet stream integrity as occurs in the
live network. This feature is important, because reordered packets may have
deep impact on the protocol performance. We measure the level of packet
stream integrity by IP packet reordered ratio (IPRR) metric defined in [15].

2.2 Case study: NetEm tool

In this case study we focus on evaluation of capabilities and limitations of NetEm
emulator [7] available in Linux operating system. The NetEm uses four indepen-
dent processes to emulate the network behavior that are: (1) packet delay pro-
cess, (2) packet loss process, (3) packet duplication and (4) reordering process.
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Fig. 2. Histogram of packet transfer delay for original network.

The packet delay process uses delay distribution stored in the form of inverted
cumulative distribution function. The NetEm offers a few predefined distribu-
tions, e.g., uniform, normal and Pareto, but it also allows to provide custom
distributions. They could be created from packet delay traces by maketables
tool available in iproute2 package.

Notice that the traces with packet transfer delay samples are not usually pub-
licly available. Taking into account this fact, we used “one point” packet traces
(with volume of traffic over time) and performed simulations to obtain delay
and loss characteristics. We selected one of the traffic traces that are available
in the MAWI repository [17], i.e., a trace file captured in sample point F of the
WIDE network on the 1st of November 2009 (file name 200911011400.dump).
This sample point records traffic going in both directions of an inter-continental
link. In the network emulation, we were interested in one direction, so we fil-
tered the trace file to include only the packets with destination Ethernet address
00:0e:39:e3:34:00. In simulations, we used only IP packets (version 4 and 6) with-
out overhead of Ethernet headers; there were 6 non-IP packets and they were
discarded. Finally, the filtered trace file covered around 8.2×109 bytes that were
sent over 15 minutes; the mean bit rate of traffic was close to 73 Mbps.

Note that the packet trace was collected in a single point in the network.
In order to obtain packet transfer delay and loss characteristics we performed
simple simulation experiment. First, we created a topology with 2 nodes that
are connected by 100 Mbps link with 10 ms propagation delay. The size of output
buffer for each interface was set to 300 packets. Next, we introduced two traffic
streams: (1) background stream based on the prepared packet trace, and (2)
foreground constant bit rate stream using 100 byte packets emitted every 1 ms
(bit rate equal to 800 kbps). Since the link capacity in the original packet trace
was equal to 150 Mbps, we artificially created a bottleneck where queueing effects
appeared. Finally, we recorded the packet delay and loss traces for the probing
stream. The obtained histogram of delay distribution is presented in Fig. 2.
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(a) NetEm with default configuration
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(b) NetEm with integrity

Fig. 3. Histograms of packet transfer delay for NetEm tool.

On the basis of these delay samples, we prepared a distribution table for
NetEm tool. This table was used for tests in a testbed network, which consisted
of 3 nodes (PCs) connected in cascade by 1 Gbps links, similarly to the scenario
presented in Fig. 1. The middle node runs NetEm (with our custom delay distri-
bution table), while the other two run MGEN [18] to generate traffic. All nodes
were synchronized with the GPS clock with time drift below 100µs. The traffic
emitted by the generator had the same profile as the foreground traffic used in
simulation (constant bit rate, 100 byte IP packets, 1 ms inter-packet gap). Using
this setup we performed measurements in two test cases:

Case 1: NetEm with default configuration,
Case 2: NetEm with enforced packet stream integrity.

Fig. 3 shows the histogram of packet transfer delay for both test cases. More-
over, Table 1 presents values of performance metrics measured for NetEm with
reference to the original network.

In the first test case, we observe that the delay distribution is maintained
up to 23 ms, but above this value the distribution is trimmed; all greater mass
of probability is assigned to the last value. This effect comes from the NetEm’s
delay distribution storage method, which in default configuration does not allow

Table 1. Results of NetEm tests.

original NetEm NetEm
network with integrity

mean IPTD [ms] 11.7 10.4 14.7
stddev of IPTD [ms] 3.3 0.6 3.8

IPLR [%] 0.215 0.213 0.213
IPPR [%] 0 46 0

cross-correlation coeff. 0.26 0.00 0.00
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(a) packet transfer delay
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Fig. 4. Correlogram of packet transfer delay and packet loss.

the values to differ more than 4 times standard deviations from the mean value.
This behavior limits the usage of distributions with long tails, which are typically
observed in the Internet [8]. Other limitation appeared in the form of large
amount of reordered packets, i.e., more than 46% packets changed the order in
packet stream.

In the second test case, we changed the default behavior of NetEm to main-
tain the packet stream integrity (we changed queue type from tfifo to pfifo). This
modification caused that the delay distribution changed it’s shape and parame-
ters, see Fig. 3(b) and Table 1.

In Fig. 4, we presented the correlograms (autocorrelation plots) of delay and
loss processes as observed in both test cases and original network. Notice that,
for both first and second test case, the autocorrelation function of these processes
is not maintained. In fact, the loss process is entirely uncorrelated, while the de-
lay process shows minor autocorrelation only for the second test case caused by
enforcing integrity. We also see that, not only each process shows no autocor-
relation, there is no cross-correlation between packet transfer delay and packet
loss processes. In original network the cross-correlation coefficient equals about
0.24, while for both NetEm tests it is zero (no correlation).

The lack of correlation motivated us to perform additional test with NetEm’s
built-in correlation feature. Comparing the results of this test with the first test
case, we observe lack of lost packets. This effect comes from incorrect imple-
mentation of NetEm “correlation” model when inverted cumulative distribution
function is used. Therefore, we ignored these results.

By performing the above validation, we concluded that the NetEm emula-
tion model has important lacks. This motivated us to create a new model that
mitigates NetEm’s limitations and allows for more precise replication of network
characteristics.
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3 Emulation method in EmPath tool

In this section we present the EmPath tool. After describing the proposed algo-
rithm we focus on its implementation in Linux kernel.

3.1 The emulation algorithm

The EmPath uses two random processes to emulate packet transfer. The first
process decides whether incoming packet is lost or transferred, while the second
process determines the delay of transferred packets. Specifically, we define these
processes as:

– the packet loss process, named L(t), which takes the value 1 when incoming
packet is lost and 0 otherwise,

– the packet transfer delay process, named D(t), which determines the delay
observed by transferred packet.

Next, we define discrete-times series {Li} and {Di}, based on the above
processes using moments of packet arrivals ti, where i = 1, 2, 3, . . . denotes packet
number, as:

– {Li}, where Li = L(ti),
– {Di}, where Di = D(ti).

We assume that emulator’s decision about incoming packet depends only on
the status of the previous packet and current inter-packet gap. This assump-
tion allows us to use a discrete-time Markov process with the following generic
equation:

(Ln−1, Dn−1, tn − tn−1)→ (Ln, Dn). (1)

Although we could apply more complex models with broader range of dependen-
cies (beyond n − 1 state), our choice originates from the usual behavior of the
queueing systems. Moreover, implementation of models with “long” memory of
the process is unfeasible due to state space explosion. Notice that, the generic
rule (1) uses real numbers for Dn−1, tn−1 and tn, which for efficient implemen-
tation would require us to know the exact distribution functions. In order to
circumvent this limitation, our model uses simplified representation with quan-
tized values. First, we assume that quantized delay values can be grouped into
a number of predefined states (with relation f(delay) → state). Furthermore,
we introduce a special state sloss that is used to emulate the delay of the packet
transfered after any lost packet. Next, we treat the packet inter-arrival period
with finite resolution of time ∆ = tn − tn−1, where all packets arriving within
one time unit ∆ observe the same result (loss or delay). Finally, for each state s
we need to know:

– the probability of packet loss ls,
– the conditional probability distribution of packet delay ds under the condi-

tion that current packet is not lost (the support set of this distribution is
also quantized).
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Fig. 5. Exemplary operation of the emulation algorithm.

Using the above variables the emulation algorithm for each time unit ∆
summarizes as:

1. Check packet loss against ls.
2. If packet is lost, set current state to s ← sloss, return the result
{loss} and stop the algorithm.

3. Generate new delay from distribution ds.
4. Update the current state according to the relation s← f(delay).
5. Return the result {delay} and stop the algorithm.

In order to better understand the proposed emulation method, let us consider
the example presented in Fig. 5, which shows few transition steps. Initially (time
moment n∆ ), the algorithm is in state s0. As new packet arrives, the decision
is made that it would not be lost and that it would observe a delay equal to
{delayn}. Furthermore, this value of delay is related to a new state s1 for the
algorithm. Consequently, in time moment (n + 1)∆ the algorithm uses another
loss probability and delay distribution table. This time, it was decided that
packet should be lost, so algorithm switches into a state sloss and it returns a
result {lossn+1}. Following this scheme, the algorithm switches in next steps
into states s0 and s2 with respective loss and delay distributions, and returns
exemplary values {delayn+2} and {delayn+3}.

The emulation algorithm must be performed for each time unit ∆, so the
number of iterations is proportional to the duration of packet inter-arrival time,
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e.g. for packet inter-arrival time equal to k ∗ ∆ it requires k iterations. This
behavior may hamper the emulator performance, especially when there are long
idle periods between arriving packets. In order to improve emulator performance,
we can calculate new table with analogical distributions for time unit 2∆ based
on distributions ls and ds for time unit ∆. This is similar to Markov chain when
we want to obtain transition matrix with “two steps” from transition matrix
with “one step”, i.e., we calculate a square of transition matrix. This method
can by applied recursively for any time unit in the form 2n∆. Consequently,
using multiple tables for different time units we reduce the complexity to the
logarithmic level, e.g., for inter-arrival 78∆ it is sufficient to use 4 iterations as
78∆ = (64 + 8 + 4 + 2)∆.

3.2 Implementation

The core part of the EmPath is implemented as a kernel module of the Linux
operating system. Similar to the NetEm tool, our tool is implemented as a packet
scheduler, which can be deployed on a network interface (the kernel module is
named sch empath).

The emulation algorithm is applied to each packet arriving to the interface,
which is dropped or delayed in first-in first-out queue. While the decision about
packet loss can be implemented using single condition, the representation of
the delay distribution requires more attention. As our emulation model assumes
multiple distribution tables that are used depending on the current state, we
decided to use less memory consuming tree-like structure. Moreover, the EmPath
kernel module allows for recursive calculation of “two step” distribution tables
from any ∆ time unit into 2∆ one.

The second part of our tool is the extension of tc tool in the iproute2 package.
The tc tool allows for deployment and configuration of various packet schedulers
from the user space of the Linux operating system. Our extension reads a spe-
cially formatted files containing packet loss probabilities and packet transfer
delay distributions. Notice that the Linux kernel does not support calculations
with floating point numbers. Consequently, both EmPath extension of tc tool
and EmPath kernel module use fixed point representations with unsigned 32
bit integer numbers. This choice was also motivated by the fact that the default
kernel random number generator that we use: function net random(), which pro-
vides unsigned 32 bit integer values.

We released the EmPath tool as open source software available at address
http://code.google.com/p/empath/.

4 Evaluation of EmPath tool

In order to start the evaluation of EmPath tool we created tables with conditional
probability distributions of packet transfer delay. We used the same packet delay
traces for the original network that were used in the NetEm case study (see
section 2.2). The profile of traffic stream used for sampling the delay and loss
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Fig. 6. Histograms of packet transfer delay in EmPath experiment.

processes considered 1ms intervals, so the time unit was set to ∆ = 1ms.
Furthermore, the resolution of delay distributions was set to 1ms. Taking into
account that the range of the packet transfer delay was equal to 30ms we decided
to use 31 states (including one “loss state”). Therefore, we prepared 31 delay
distributions and packet loss values, one for each state.

The experiment was performed in the same network topology as used for
the NetEm use case (3 nodes connected in cascade where middle node provided
emulation capabilities). The profile of measurement traffic remained the same.

Fig. 6 presents histograms of delay for original network and for values mea-
sured with EmPath tool (more than 10 million packets were emitted). The shape
of the delay distribution, as well as, performance metrics (shown in Table 2) are
very similar to the original characteristic. The recovered distribution is shifted to
the right due to assumed 1ms delay resolution. Moreover, Fig. 7(a) shows that
the autocorrelation function of delay process is similar to the original network,
which suggests that proposed model correctly captures this characteristic.

For the characteristic of the loss process, the mean value (IPLR) is similar,
but the autocorrelation functions (shown in Fig. 7(b)) differ for lower lags. This
indicates that the assumed emulation method of packet losses is insufficient in

Table 2. Selected metrics measured in the EmPath experiment.

original EmPath
network emulation

mean IPTD [ms] 11.7 12.1
stddev of IPTD [ms] 3.3 3.4

IPLR [%] 0.215 0.231
IPPR [%] 0 0

cross-correlation coeff. 0.26 0.24
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Fig. 7. Correlogram of packet transfer delay and packet loss.

short term time scale (the geometric distribution is too simple). One may extend
the model to add more states related with losses, e.g., by adding a condition for
rare loss events upon other rare loss events. Consequently, it would require us to
gather much more samples from original network when preparing the distribution
tables. On the other hand, the cross-correlation coefficient between delay and
loss processes is similar for original network (0.26) and for EmPath emulation
(0.24). Furthermore, the EmPath tool guaranteed no packet reordering.

Notice that, while the implementations of NetEm and EmPath tools are sim-
ilar in their nature, EmPath provides more realistic characteristics and features
of emulated network.

5 Summary

In this paper we investigated the problem of network emulation. Our objective
was to emulate the packet transfer characteristics offered by a network path.
We performed experiments with the widely used NetEm tool, which is available
in the kernel of Linux operating system. The obtained results showed several
limitations of the NetEm tool, related to limited range of packet transfer de-
lay distribution, lack of correlation between packet transfer delays and packet
losses lack of packet stream integrity. These limitations motivated us to design
more effective emulation method and implement own tool called EmPath. In our
method, the delays and losses experienced by transferred packets are modeled as
a Markov process that uses multiple transition matrices, where each of them is
conditioned on the status of the proceeding packet. Our method guarantees the
distribution of packet transfer delay without a packet reordering and introduces
correlation of delay and loss processes (autocorrelation and cross-correlation)
in similar way as observed in a live network. The parameters required by Em-
Path, such as conditional probability distribution of packet delays and losses are
directly derived from the delay traces measured in a live network.
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We implemented EmPath tool in the Linux kernel and released it under GNU
Public License. Then, we preformed experiments to verify the EmPath capabili-
ties and possible limitations. The obtained results, as illustrated in the included
examples, confirmed the effectiveness of the proposed method and EmPath tool.
In further work, we plan to focus on extending the model of loss process for
inclusion of burst losses which was identified as a slight limitation of EmPath
tool. Moreover, we plan more experiments for delay and loss traces collected in
different network environments.
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