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Abstract. This work attempts to characterize network traffic flows originating
from large-scale video sharing services such as YouTube. The key technical con-
tributions of this paper are twofold. We first present a simple and effective method-
ology that identifies traffic flows originating from video hosting servers. The key
idea behind our approach is to leverage the addressing/naming conventions used
in large-scale server farms. Next, using the identified video flows, we investigate
the characteristics of network traffic flows of video sharing services from a net-
work service provider view. Our study reveals the intrinsiccharacteristics of the
flow size distributions of video sharing services. The origin of the intrinsic char-
acteristics is rooted on the differentiated service provided for free and premium
membership of the video sharing services. We also investigate temporal charac-
teristics of video traffic flows.

1 Introduction

Recent growth in large-scale video sharing services such asYouTube [19] has been
tremendously significant. These services are estimated to facilitate hundreds of thou-
sands of newly uploaded videos per day and support hundreds of millions of video
views per day. The great popularity of these video sharing services has even lead to a
drastic shift in Internet traffic mix. Ref. [5] reported that the share of P2P traffic dropped
to 51% at the end of 2007, down from 60% the year before, and that the decline in this
traffic share is due primarily to an increase in traffic from web-based video sharing ser-
vices. We envision that this trend will potentially keep growing; thus, managing the
high demand for video services will continue to be a challenging task for both content
providers and ISPs.

On the basis of these observations, this work attempts to characterize the network
traffic flows, originating from large-scale video sharing services as the first step toward
building a new data-centric network that is suitable for delivering numerous varieties
of video services. We target currently prominent video sharing services; YouTube in
US, Smiley videos in Japan [16], Megavideo in Hong kong [12],and Dailymotion in
France [6]. Our analysis is oriented from the perspective ofa network service provider,
i.e., we aim to characterize the traffic flows from the viewpoints of resident ISPs or
other networks that are located at the edges of the global Internet.

Our first contribution is identifying traffic flows that originate from several video
sharing services. The advantage of our approach lies in its simplicity. It uses source



IP addresses as the key for identification. To compile a list of IP addresses associated
with video sharing services, we analyze a huge amount of access logs, collected at
several web cache servers. The key idea behind our approach is to leverage the nam-
ing/addressing conventions used by large-scale server farms. In many cases, web servers
for hosting videos and those for other functions such as managing text, images, or ap-
plications, are isolated. These servers are assigned different sets of IP prefixes, which
are often associated with intrinsic hostnames, e.g., “img09.example.com” is likely used
for servers that serve image files. We also leverage open recursive DNS servers to asso-
ciate the extracted hostnames of video hosting servers withtheir globally distributed IP
addresses.

Our second contribution is revealing the intrinsic characteristics of video sharing
services, which are not covered by conventional web traffic models. The origin of the
characteristics is based on the differentiated services provided for free and premium
membership of the video sharing services. We also investigate temporal characteristics
of video traffic flows.

The remainder of this paper is structured as follows. Section 2 describes the mea-
surement data set we used in this study. We present our classification techniques in
section 3. We then analyze the workload of video sharing services, using the identi-
fied traffic flows originating from video hosting servers, in section 4.Section 5 presents
related work. Finally, section 6 concludes this paper.

2 Data description

This section describes the two data sets we used in this study. The first data set was web
proxy logs, which enable us to collect the IP addresses of video hosting servers used by
video sharing services. The second data set was network traffic flows, which enable us
to investigate the characteristics of the workload of videosharing services.

2.1 Web cache server logs

We used IRCache data set [10], which is web cache server logs,open to the research
community. We used the access logs collected from 7 root cache servers located in cities
throughout the US. The access logs were collected in September 2009. Since the client
IP addresses were anonymized for privacy protection, and the randomization seeds are
different among files, we could not count the cumulative number ofunique client IP
addresses that used the cache servers. We noted, however, that a typical one-day log
file for a location consisted of 100–200 unique client IP addresses, which include both
actual clients and peered web cache servers deployed by other institutes. Assuming
there were no overlaps of client IP addresses among the web cache servers, the total
number of unique client IP addresses seen on September 1, 2009 was 805, which was
large enough to merit statistical analysis.

The one-month web cache logs consisted of 118 M web transactions in total. The
118 M transactions account for 7.8 TB of traffic volume. 89 M transactions return the
HTTP status code of “200 OK” and these successfully completed transactions account
for 6.2 Terabytes of traffic flows that are processed on the web cache servers.



2.2 Network flow data

In this work, we define a flow as a unique combination of source/destination IP address,
source/destination port number, and protocol. We used network flow data that were
collected at an incoming 10-Gbps link of a production network. For each flow, its length
in seconds and size in bytes were recorded. The measurement was conducted for 9.5
hours on a weekday in the first quarter of 2009. The format of the network flow data set
is: {ctime, mtime, src IP, anonymized client ID (AID), protocol,
src port, dst port, #pkts, bytes}, where “ctime” and “mtime” are created
and modified time of a flow, and “#pkts” and “bytes” are the number of packets and
bytes of a flow, respectively. “AID” is randomized destination (client) IP address. The
5-tuple,{src IP, AID, protocol, src port, dst port} composes a flow.

The total amount of incoming traffic carried during the measurement period was 4.4
TB, which corresponded to the mean offered traffic rate of 1.03 Gbps. The incoming
traffic consisted of 108 M distinct flows that were originated from 5.5 M of sender IP
addresses to 34 K of receiver (client) IP addresses. Of these, 40.6 M were the incoming
web flows. The traffic volume of the web flows was 1.8 TB (mean offered traffic rate
was 0.42 Gbps).

3 Extracting sources of video flows

We now present the techniques for identifying video flows among the network flow
data set. We use a source IP address as a key for identification, i.e., if an incoming flow
originates from an IP address associated with a video sharing service, we identify the
flow as a video flow.

As mentioned earlier, the key idea of this approach is leveraging the naming/addressing
conventions used by large-scale web farms, where servers are grouped by their roles,
e.g., hosting a massive amount of large video files, hosting amassive number of thumb-
nails, or providing rich web interfaces. We first present a video sharing service uses
distinct hostnames for each subtypes of HTTP content-type,i.e., video, text, image, and
application. We then collect hostnames of video hosting servers. Finally, we compile
the IP addresses that are associated with the hostnames.

3.1 Classifying hostnames with subtypes of HTTP content-type

This section studies naming convention used in large-scalevideo sharing services and
presents distinct hostnames are used for each sub-categoryof HTTP content-type. The
web cache server logs are used for the analysis. We also studythe basic property of the
objects for each category.

We start by looking for a primary domain name for the video sharing service of
interest, e.g., YouTube. More specifically, we compare a hostname recorded in web
cache logs with that domain name to see if the hostname in URL matches the regular
expression in perl-derivative,/\.youtube\.com$/. If we see a match, we regard the
object as one associated with YouTube. Although we use the YouTube domain as an
example in the following, other prominent video sharing services today can also be
explored in a similar way. For brevity, only the results for those services will be shown
later.



Table 1.Statistics of Content-types in web transactions associated with YouTube.

Content-typeNo. of transactionstotal volumemean size

video 160,180 681 GB 4.3 MB
image 48,756 157 MB 3.2 KB
text 458,357 4.3 GB 9.5 KB

application 109,743 359 MB 3.3 KB
other 35,021 23 MB 678 B
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Fig. 1.CDFs of object size for each content-type.

We analyzed the 89 M of successfully processed HTTP transactions, and found 812
K transactions were associated with YouTube. The total volume of these transactions
was 686 GB in the one-month logs. Frequency of content-typesfor the transactions
to the YouTube domain are summarized in Table 1. A content-type is defined as an
Internet media type, which is used by several protocols suchas SMTP, HTTP, RTP,
and SIP. Examples of observed sub-types for each content-type are x-flv/mp4 (video),
jpeg/gif (image), html/xml (text), and x-shockwave-flash/javascript (application). This
variety of content files together forms the video sharing service. Notice that more than
80% of YouTube web transactions carry non-video data. This indicates that these non-
video data are crucial factors from the viewpoint of processing overhead rather than
transport overhead. For instance, from the perspective of anetwork service provider,
these non-video transactions consume a lot of resources on network middle boxes, such
as firewalls or NAT, which need to keep track of connections.

Next, we looked at the correlation between the content-typeand size of an object.
In addition to the total volume and mean size of objects, we plot the cumulative distri-
bution functions (CDFs) of object sizes for each content-type (see Fig. 1). Notice that
the majority of image, text, and application objects are small. For instance, 99% of im-
age and application objects are less than 10 KB, and 99% of text objects are less than
30 KB. In contrast, the size of video objects is heavy-tailed, ranging over 6 orders of
magnitude, from less than 1 KB to 500 MB. We note that very small video objects, e.g.,
less than 20 KB, are likely due to partial or incomplete transmission.



Table 2. Number of distinct hostnames observed for YouTube transactions with HTTP status
code of 200 or 206.

Content-type# of hostnames

video 490
image 63
text 23

application 5
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Fig. 2. Top 5 hostnames by number in YouTube web transactions for each content-type.

3.2 Collecting hostnames of server farm

Using the naming convention studied in the previous subsection, we aim to compile
a list of hostnames of video hosting servers from the web cache server logs. Process-
ing the data set is straightforward, however, we note that itis necessary to cope with
side effects of irregular patterns such as HTTP status code “204/No Content”, which is
used in cases where the request was successfully processed but the response does not
have a message body [10]. To avoid this, we prune the transactions that have HTTP
status codes other than “200/Ok” or “206/Partial Content”, which mean the successful
transaction and the response to a request to an object data subset, respectively. This
heuristic eliminates the cases where video hosting serversreturn text/html content with
the “204/No Content” code, “303/redirection” code, or other error codes.

The statistics of collected hostnames for YouTube are shownin Table 2. While
video objects are served by a large number of servers, objects of other content-types are
served by a small set of servers. Next, we focus on the number of web transactions per
hostname. The top five hostnames for each content-type are shown in Fig. 2. Clearly,
the hostnames of the video hosting servers are different from those for other content-
types. We also notice that for video hosting servers, the number of accesses are balanced
among the top five servers; this indicates that the video hosting servers are likely to be
accessed by load-balancing mechanisms.

We next extract the naming rule of the video hosting servers from the collected host-
names. Table 3 shows the hostnames of the video hosting servers of YouTube, where
“⊙” and “⊗” represent the variables of a number. In compiling the list,we complement
the missing numbers in hostnames. For instance, if we observe “foo1.example.com”
and “foo3.example.com”, but not “foo2.example.com”, we conjecture that the last
hostname was likely missed during data measurement and add it to the list. We also test
whether the complemented hostname has a valid DNS A record(s). In total, the gener-
alized hostnames of YouTube video hosting servers contribute 998 distinct hostnames.
We note the primary classes of hostnames are significantly biased to the top two classes,
i.e., “v⊙.lscache⊗.c” and “v⊙.cache⊗.c”. The number of hostnames for these classes is



Table 3.Generalized hostnames of YouTube video hosting servers andnumber of observed trans-
actions for each class of hostname.

Hostnames Complemented range # of observed transactions

v⊙.lscache⊗.c 1 ≤ ⊙ ≤ 24, 1≤ ⊗ ≤ 8 130,286
v⊙.cache⊗.c 1 ≤ ⊙ ≤ 8, 1≤ ⊗ ≤ 8 27,485
tc.v⊙.cache⊗.c 1 ≤ ⊙ ≤ 24, 1≤ ⊗ ≤ 8 1626
v⊙.nonxt⊗.c 1 ≤ ⊙ ≤ 24, 1≤ ⊗ ≤ 8 25
lax-v⊙.lax 1 ≤ ⊙ ≤ 308 19
sjl-v⊙.sjl 1 ≤ ⊙ ≤ 50 (with exceptions) 19

Table 4.Generalized hostnames of video hosting servers.

Service Hostnames Complemented range

Smiley videossmile-com⊙⊗.nicovideo.jp 0 ≤ ⊙ ≤ 6, 0 ≤ ⊗ ≤ 3
Smiley videossmile-cub⊙⊗.nicovideo.jp 0 ≤ ⊙ ≤ 6, 0 ≤ ⊗ ≤ 3
Megavideo www⊙.megavideo.com ⊙ can be any positive integer.
Dailymotion proxy-⊙⊗.dailymotion.com0 ≤ ⊙ ≤ 9, 0 ≤ ⊗ ≤ 9

256 (= (24+8)×8). In the rest of this work, we will use these 256 names as the primary
hostnames of YouTube.

Using these techniques, we extracted generalized hostnames of video hosting servers
for other video sharing services. The results are summarized in Table 4. Although nam-
ing conventions differ among the services, all the services use their own naming rule.
We finally note that these lists are snapshots and should be periodically updated.

3.3 Extracting global IP addresses

This section aims to extract global IP addresses that are associated with the hostnames
collected in the previous subsection. It is well known that large-scale server farms such
as YouTube and Akamai typically use a large number of global IP addresses that are
associated with a smaller set of hostnames. The methodologyis aimed at balancing
the load of globally distributed accesses across the serverfarms [9]. This addressing
convention enables us to associate global IP addresses withparticular hostnames that
are used for video hosting.

Because of these spatially distributed load-balancing mechanisms used in server
farms, an IP address obtained by looking up the DNS A record ofa hostname could
differ in location. For example, Akamai CDN tweaks the DNS mechanism to select the
closest web server from a client. Similarly, YouTube uses the HTTP redirection mech-
anism to introduce load balancing in a dynamic way [20]. Thus, we need to perform
globally distributed DNS resolutions to compile a list of IPaddresses associated with
the list of hostnames.

To achieve this objective, we adopted a methodology proposed by Huang et al. in
Ref. [9]. They performed globally distributed DNS resolution of 16 M unique web
hostnames to obtain a complete list of DNS CNAMEs for Akamai CDN servers, which
could be used to estimate roughly the scale of the Akamai infrastructure. The key idea of
their approach is to leverage open recursive DNS (ORDNS) servers, which will resolve
DNS queries for any clients from anywhere; this approach enables us to obtain global



Table 5.Number of IP addresses for video hosting servers.

Service # of addresses

YouTube 2,138
Smiley videos 74
Megavideo 670
Dailymotion 100

view of the system from an Internet edge site. We use a similarapproach to that shown
in Ref. [9] to compile the list of ORDNS servers. In total, we collected more than 5,000
ORDNS servers that are distributed across 68 countries.

For each hostname shown in Tables 3 and 4, we performed DNS resolutions from
all the ORDNS servers we collected, and compiled the resolved answers. The results
are summarized in Table 5. Notice that these services consist of a fairly large number
of servers. For example, YouTube has 2,138 unique IP addresses, which is much larger
than the original 256 hostnames. Note that the number of global IP addresses does
not necessarily correspond to the number of actual video hosting servers, meaning the
actual infrastructure could be larger than can be seen from an Internet edge site. In
addition, the extracted IP addresses for video hosting servers are mostly different from
those for other media types, i.e., image, text, and application. Thus, the obtained IP
addresses of video hosting servers can be used as a simple andeffective key to identify
the video flows of large-scale video sharing services.

4 Characterizing video flows

In the previous section, we compiled a list of IP addresses for the video hosting servers,
using web cache server logs. This section uses our network flow data set to characterize
traffic flows originating from video sharing services by using the list of IP addresses.
First, we study fundamental statistics of video flows, whichplays an essential role in
understanding the structure of traffic flows. Next, we employ in-depth analysis of flow
size distributions, which exhibit intrinsic characteristics. Finally, we investigate tempo-
ral characteristics of video traffic flows.

4.1 Flow statistics

We investigate the fundamental statistics of video flows, i.e., flow size, flow rate, and
flow duration, which form essential parts of the traffic workload model. Since a large
portion of the extracted flows is composed of small flows, which could be incomplete
flows or error flows, we exclude these small flows from our analysis. On the basis of the
observation from Fig. 1, we use 20 KB as a threshold for pruning the small flows. As
a result, of the 103K of collected YouTube video flows, 60K flows were removed. We
note that although the number of pruned flows was not small, their contribution to the
total traffic volume was negligible. Actually, the pruned flows contributed less than 1%
in total traffic volume. We also note that majority of the pruned flows wereincomplete,
i.e., most of them were one-packet TCP flows with SYN/ACK flag, originated from
youtube video hosting servers; i.e., the video hosting servers were likely port-scanned
by some of clients. Since we are interested in the impact of YouTube traffic from the



Table 6.Statistics of observed flows that are larger than 20 KB.

Service # of flows Mean sizeMean rateMean duration

YouTube 43,960 4.1 MB 1.3 Mbps 41.8 sec
Smiley videos 3,438 21.3 MB 2.6 Mbps 139.8 sec
Megavideo 1,354 30.0 MB 1.3 Mbps 232.6 sec
Dailymotion 730 13.7 MB 1.5 Mbps 96.0 sec
All web 5,043,927 0.33 MB 0.9 Mbps 16.5 sec

Table 7.Uploading limitations (as of 1Q 2009).

Service Free membership Premium membership

YouTube 10 minutes or 2 GB per video 20 GB per video (partners)
Smiley videos40 MB per video 100 MB per video
Megavideo 100 MB per video 5 GB per video
Dailymotion 20 minutes or 150 MB per video–

network service provider perspective, focusing on flows that deliver actual video data
is essential.

The basic statistics for these metrics are summarized in Table 6. In general, video
flows are larger, faster, and longer than conventional web flows. This observation agrees
with the previous work [15] by Plissonneau et al. Next, we look into the detailed char-
acteristics of each metric.

Flow size: The top-left graph of Fig. 3 presents log-log complementary cumula-
tive distribution function (CCDF) plots for flow size distributions. While the web flows
(shown as “All web” in the legend of the graph) obey a clear Pareto-like distribution
with moderate decaying at the tail, all the other video flows exhibit different character-
istics. In general, they are significantly heavy-tailed; for instance, more than 60% of the
video flows are larger than 1 MB for all video services, while less than 3% of flows are
larger than 1 MB in all the web flows. This significant heavy-tailedness can also be seen
in the flows of P2P file-sharing applications. What makes the video flows distinguish-
able from P2P flows is shown next. That is, the video flows exhibit clear change points
in the middle area, where probability distributions drop sharply, i.e., the points at 30,
40, and 100 MB. In fact, we find that these change points correspond to the intrinsic ca-
pacity limitation of the video sharing services. This data is summarized in Table 7. We
can see that the file size limitations agree with the change points of the flow size distri-
butions. For example, the change point of Megavideo flow sizedistribution is 100 MB,
which is exactly the upload file size limitation for non-premium (free) membership.

We conclude the following from these observations:

– Size distributions of video flows are quite heavy-tailed.
– The tail parts of flow size distributions for video sharing services are constrained by

the limitation of available service resources for free membership (upload file size).

Flow rate: Next, we look at the flow rate, which is the number of bits divided
by flow duration. The top-right graph of Fig. 3 shows log-log CCDF plots for flow



10 k 100 k 1 M 10 M 100 M 1 G 10 G
x

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(X

 >
 x

)

YouTube
Smiley videos
Megavideo
Dailymotion
All web

10
0

10
1

10
2

10
3

10
4

10
5

x
10

-4

10
-3

10
-2

10
-1

10
0

P
(X

 >
 x

)

YouTube
Smiley videos
Megavideo
Dailymotion
All web

100 m 1 10 100 1 k 10 k
x

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(X

 >
 x

)

YouTube
Smiley videos
Megavideo
Dailymotion
All web

10 k 100 k 1 M 10 M 100 M 1 G
x

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(X

 >
 x

)
YouTube
DTPD approximation
DPD approximation

Fig. 3. Statistics of YouTube flows; Log-log CCDFs of flow size in bytes (top left), flow rate in
Kbps (top right), and flow duration time in seconds (bottom left). Approximation of YouTube
flow size distribution (bottom right).

rate distributions. In contrast to flow size distributions,we do not see much difference
among the flows. An exception is a change point of 3 Mbps for Smiley videos. This
observation again agrees with the differentiated service offered by the providers, i.e.,
premium members enjoy high-speed downloading while free members do not. We note
that all the distributions fit the log-normal distributionswell. For brevity, we omit the
results.

Flow duration : Finally, we look into the flow duration. The bottom-left graph of
Fig. 3 presents log-log CCDF plots of flow duration distributions. While we have seen
the effects of available service capacities on the distributions for size and rate, we do
not see the effects in the flow duration, despite the fact that the mean size and mean
duration are positively correlated (see Table 6). Note thatthe actual download time (i.e.,
flow duration) may depend on other factors, such as throughput of access links or CPU
resources of the end-terminal devices, which could be drastically different among the
clients. Therefore, we do not see clear change points for theflow duration distributions.

4.2 Characterizing the size distributions of video flows

In the previous section, we found that the flow size distributions of current video sharing
services have an intrinsic property. That is, the tail part of the distributions is constrained
by the available service capacity, e.g., upload file size limitation. In this section, we
attempt to characterize the flow size distribution to betterunderstand its structure.



We start by approximating the distribution with known distributions. Assume that
flows for free and premium membership can be modeled with different distribution
models. Since flow sizes for free membership are truncated ata certain threshold, we
adopt the discrete truncated Pareto distribution (DTPD) [13] for this class. For flow
sizes for premium membership, we adopt the simple discrete Pareto distribution (DPD),
which does not include any truncations.

Let X be a discrete random variable, which represents the size of aflow. The prob-
ability mass function of DTPD is given as

P(X = x) = f (x;α1, β1, θ1) =
x−θ1 − (x+ 1)−θ1

α
−θ1
1 − β

−θ1
1

,

which satisfiesP(X > α1) = 1 andP(X > β1) = 0. Note thatP(X > x) = (x−θ1 −
β−θ1)/(α−θ11 − β

−θ1
1 ) andP(X = x) = P(X > x) − P(X > x+ 1). The property of DTPD

enables us to capture both the heavy-tailedness and the constraints at the thresholdβ1.
Similarly, the distribution function of DPD is given as

P(X = x) = g(x;α2, θ2) =
x−θ2 − (x+ 1)−θ2

α
−θ2
2

.

We now illustrate how the flow size distribution can be approximated with the
DTPD and DPD in a graphical manner. YouTube is chosen as our case study.

We first setα1 = 20, 000 andβ1 = 30, 000, 000 (bytes), which are the minimum
flow size (20 KB) we are interested in, and the graphically estimated truncation point,
respectively. Note that YouTube has two-way constraints: size and time; thus, the trun-
cation point reflects their mix. In general,β1 reflects the capacity limitation for a video
sharing service.

Next, we estimate the parameters of DTPD and DPD independently, using a simple
assumption, i.e., contribution of flows from premium users to DTPD is negligible. The
shape parameter of DTPD is estimated with the maximal likelihood estimation (MLE),
using the given parametersα1 andβ1. Note that the estimation process requires numer-
ical calculation to solve the ML equation. See our previous work [13] for the detail of
calculation. Finally, we estimate the shape parameter of DPD for flows larger thanβ1

with the least square method. We note that the approximated distributions above are
notcontinuous at the truncation point in theory. Thus, we cannot use the approximated
distributions to derive statistics such as mean or variance. Our objective is to illustrate
that the actual flow size distribution of a video sharing service can be divided into two
distinct types of distribution models, DTPD and DPD.

The estimated shape parameters areθ1 = 0.008 for DTPD andθ2 = 2.76 for DPD.
The bottom-right graph of Fig. 3 shows the results. Notice both DTPD and DPD ap-
proximate the distribution well. In addition, notice that the shape parameter of DTPD
takes extremal values, i.e.,θ ∼ 0.008< 1 indicates that the first and second moments
could be divergent if there is no constraint. In fact, more than 10% of flows is larger than
10 MB. We conjecture that these skewed parameters reflect theeffect of the constraints.
That is, many free membership users who hope to upload large files need tocompress
or divide the files so that they fit into the service capacity. Accordingly, many files that
were originally larger than the limitation are made smallerthan the limitation; thus, they
show thetruncationproperty. We note that flow size distribution and file size distribu-
tion are not exactly the same because the former reflects the popularity of file accesses.



Fig. 4.Time-series of traffic volume (top), number of active flows (middle), and number ofarrival
flows (bottom), for traffic flows originating from YouTube servers.

However, the characteristics of flow size distribution should be correlated with the flow
size distribution because a flow basically originates from afile.

In summary, we found that the flow size distributions of large-scale video shar-
ing services exhibitsignificant heavy-tailednessand thetruncationproperty, which are
quite different from the property of conventional web traffic flows.

4.3 Temporal characteristics

Finally, we focus on the temporal characteristics of video flows. Understanding the
temporal characteristics such as time variability and flow arrival process is crucial in
building realistic traffic model. Since our data set consists of 9.5-hours of traffic data,
we cannot study the cyclic patterns of traffic, i.e., diurnal or weekly variation as shown
in [15]. However, as we shall see shortly, the multiple time-scale analysis enables us to
explore the temporal structure of video sharing traffic. Figure 4 shows the time-series
of (1) total traffic volume, (2) number of active flows, and (3) number of arrivalflows,
for traffic flows originating from YouTube servers. We see that the traffic volume and
number of active flows are positively correlated (correlation coefficient is more than
0.8). In contrast, the number of arrival flows is independentof these two (correlation
coefficient is less than 0.05).

Figure 5 shows auto-correlation functions for the time-series of total traffic volume,
number of active flows, and number of arrival flows. While traffic volume and number
of active flows exhibit a long-range dependence (LRD) property, the number of arrival
flows doesnot have the time correlation structure, i.e., it exhibits thememorylessness
property. These observations can be explained by the traditional traffic source model,
such as that in Ref. [17]; i.e., aggregation of heavy-tailedsource traffic (i.e., flows with
heavy-tailed size distribution) exhibits the LRD characteristics.

Finally, we aim to validate the assumption that flow arrival process can be modeled
with the Poisson model. Figure 6 shows the probability mass function of the number
of arrival flows per a time unit (1 sec) in normal and log scales. We also plot the ap-
proximated distribution with the Poisson distribution model. While the approximation
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and log-scale (bottom).

works well over the several orders of magnitudes, we observea small number of out-
liers, e.g.,n ≥ 10. For instance, we observe an eventn = 27, which means 27 distinct
flows are observed in a second. According to the Poisson approximation, the expected
probability that the event occurs should be less than 10−18, which is unlikely to happen
in the 9.5-hours measurement period. Thus, it is likely thatthese extremal congestion
periods are exceptional. On the basis of careful examination of the flows that consti-
tute these outliers, we conjecture that these outliers are associated with theflash-crowd
effectbecause the observed client IP addresses are not identical during the time periods.

We also applied Pearson’s chi-square test to make our observation conclusive. Note
that the outliers were removed before applying the statistical test. We tested a null hy-
pothesis that the observed distribution was identical to the Poisson distribution. We
concluded that we cannot reject the null hypothesis at the 0.05 level of significance.

From these observations, we may conclude that (1) the aggregated traffic of video
sharing services can be modeled with the LRD traffic model and, (2) after removing
outliers, the flow arrival process of YouTube can be well modeled with the Poisson
arrival process. We validated that these observations holdfor the other services as well
and omit the results due to the space limitation.

5 Related work

This section reviews prior studies also on the large-scale video sharing services and
compares them to ours. Recently, many researchers have focused on characterizing the
workload of large-scale video sharing services [1–4, 7, 8, 11, 15, 20]. Huang et al. [8]
analyzed the access log of MSN Video [14] and found 95% of accesses could have
been eliminated by using peer-assisted content delivery system. Cha et al. [2] analyzed
the properties of video files on YouTube and derived similar implications. Cheng et
al. [3, 4] crawled the YouTube site and found that statisticssuch as length, access pat-
terns, growth trend, and active life span were quite different compared to traditional
video streaming applications. Kang et al. [11] measured andanalyzed Yahoo! Video
sites [18] to characterize workload of the video sharing service. Based upon obtained
characteristics, they gave guideline for SLA and workload scheduling schemes on the



resource management efficiency of an online video data center. Abhari and Soraya [1]
investigated YouTube popularity distribution and access patterns through analysis of a
vast amount of data collected by crawling YouTube API. On thebasis of the obser-
vations, they presented essential elements of workload generator that can be used for
benchmarking caching mechanisms.

While the above works were attempted from video sharing service provider per-
spective, the following works were oriented for network service providers, like ours.
Zink et al. [20] analyzed YouTube traffic at a campus network and analyzed thelocal
popularity characteristics of video files. In Ref. [7], Gillet al. investigated the statistics
of user sessions (i.e., flows) on YouTube. They showed YouTube users transfer more
data and have longerthink times than traditional Web workloads. Their observation on
file transfer volume of YouTube is coherent with our findings.

Note that both the refs [20] and [7] rely on deep packet inspection (DPI) for their
analysis. In general, employing DPI exploits payload information and has been prone
to privacy problem. In contrast, our method, which bases on naming/addressing con-
ventions of large-scale server farms, does not require any payload information nor IP
addresses of end-users. It just leveragesserver-sideIP address, which is publicly avail-
able information. Also, thanks to its simplicity, the detection method is light-weight
and scalable, while conventional DPI requires expensive processing, e.g., wire rate byte
stream matching with stateful inspection of all incoming flows on high-speed links; thus
employing DPI at high-speed links is a difficult task.

Plissonneau et al. [15] characterized the impact of YouTubetraffic on a French re-
gional ADSL point of presence. They revealed that YouTube video transfers are faster
and larger than other large Web transfers. Their observations agree with our study on
YouTube and the other video services as well. They also revealed that performance of
video transfers and network load on the underlying ADSL network platform are corre-
lated. In analysing the data set, they proposed a technique of detecting YouTube video
traffic by looking up RDNS and commercial Geo-IP database with someheuristics. We
note that our detection method is more comprehensive in extracting IP address blocks
operated by service providers, and can be seen as a generalization of their approach.

We finally note that the originality of our work lies in the three contributions: (1)
proposing a simple and privacy-friendly way of identifyingvideo flows, (2) investigat-
ing multiple large-scale video sharing services simultaneously, and (3) traffic analysis
from the perspective of network service providers, including the temporal analysis of
traffic.

6 Conclusion and Future Work

In this work, we attempted to characterize traffic originating from large-scale video
sharing services from the perspective of a network service provider. We presented a
simple methodology that enables us to identify video flows bycorrelating web cache
server logs and network measurement data. The key idea behind our approach is to
leverage the addressing/naming conventions used in large-scale server farms. We ana-
lyzed the characteristics of the resulting classified videoflows and revealed that flows
originating from current large-scale video sharing services have intrinsic characteristics,
thesignificant heavy-tailednessand thetruncation property, which have not been ob-
served in existing web traffic models. The origin of these characteristics is rooted in the
differentiated service provided for free and premium membership. We also investigated



the temporal characteristics of video flows and revealed that flow arrival process can be
modeled with the Poisson arrival process and temporal variability exhibit LRD charac-
teristics. Our future work includes in-depth analysis of the new distribution model. We
will study empirically how the model fits the actual data. We also aim to understand
the mechanism that governs the distributions and its implications on network resource
management.
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