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Abstract. This work attempts to characterize networkfliaflows originating
from large-scale video sharing services such as YouTubek&¥y technical con-
tributions of this paper are twofold. We first present a sevguid €ective method-
ology that identifies tréic flows originating from video hosting servers. The key
idea behind our approach is to leverage the addressingng conventions used
in large-scale server farms. Next, using the identified oitiews, we investigate
the characteristics of network ffa flows of video sharing services from a net-
work service provider view. Our study reveals the intringiaracteristics of the
flow size distributions of video sharing services. The arigi the intrinsic char-
acteristics is rooted on theftkrentiated service provided for free and premium
membership of the video sharing services. We also investiganporal charac-
teristics of video tréfic flows.

1 Introduction

Recent growth in large-scale video sharing services suctoa$ube [19] has been
tremendously significant. These services are estimateacititite hundreds of thou-
sands of newly uploaded videos per day and support hundfeatsllmns of video
views per day. The great popularity of these video sharingices has even lead to a
drastic shift in Internet tri@ic mix. Ref. [5] reported that the share of P2Rificadropped
to 51% at the end of 2007, down from 60% the year before, artdhibalecline in this
traffic share is due primarily to an increase irfliafrom web-based video sharing ser-
vices. We envision that this trend will potentially keep \gnog; thus, managing the
high demand for video services will continue to be a challeggask for both content
providers and ISPs.

On the basis of these observations, this work attempts tacteize the network
traffic flows, originating from large-scale video sharing sersiae the first step toward
building a new data-centric network that is suitable forivdIng numerous varieties
of video services. We target currently prominent video istgaservices; YouTube in
US, Smiley videos in Japan [16], Megavideo in Hong kong [B2id Dailymotion in
France [6]. Our analysis is oriented from the perspective métwork service provider,
i.e., we aim to characterize the fiia flows from the viewpoints of resident ISPs or
other networks that are located at the edges of the gloheinet.

Ouir first contribution is identifying téic flows that originate from several video
sharing services. The advantage of our approach lies inniglisity. It uses source



IP addresses as the key for identification. To compile a fi$P@ddresses associated
with video sharing services, we analyze a huge amount ofsaclogs, collected at
several web cache servers. The key idea behind our appredchedverage the nam-
ing/addressing conventions used by large-scale server fanmmiy cases, web servers
for hosting videos and those for other functions such as giagdext, images, or ap-
plications, are isolated. These servers are assigreatatit sets of IP prefixes, which
are often associated with intrinsic hostnames, e.g., “@oggample.com”is likely used
for servers that serve image files. We also leverage opensigelDNS servers to asso-
ciate the extracted hostnames of video hosting serverghgihglobally distributed IP
addresses.

Our second contribution is revealing the intrinsic chaggstics of video sharing
services, which are not covered by conventional weflitranodels. The origin of the
characteristics is based on thefdientiated services provided for free and premium
membership of the video sharing services. We also invdstigaporal characteristics
of video tréfic flows.

The remainder of this paper is structured as follows. SeQ@idescribes the mea-
surement data set we used in this study. We present ourfidatsin techniques in
section 3. We then analyze the workload of video sharingicesy using the identi-
fied trefic flows originating from video hosting servers, in sectiosdction 5 presents
related work. Finally, section 6 concludes this paper.

2 Data description

This section describes the two data sets we used in this.Sthéyfirst data set was web
proxy logs, which enable us to collect the IP addresses @ovithsting servers used by
video sharing services. The second data set was netwdiik ftaws, which enable us
to investigate the characteristics of the workload of vidkearing services.

2.1 Web cache server logs

We used IRCache data set [10], which is web cache server dpgs, to the research
community. We used the access logs collected from 7 rootecsetvers located in cities
throughout the US. The access logs were collected in Seete?d9. Since the client
IP addresses were anonymized for privacy protection, amdathdomization seeds are
different among files, we could not count the cumulative numbemajue client IP
addresses that used the cache servers. We noted, howete, tifpical one-day log
file for a location consisted of 100—200 unique client IP addes, which include both
actual clients and peered web cache servers deployed by in#tutes. Assuming
there were no overlaps of client IP addresses among the wate crvers, the total
number of unique client IP addresses seen on September 9 y230805, which was
large enough to merit statistical analysis.

The one-month web cache logs consisted of 118 M web traosecdin total. The
118 M transactions account for 7.8 TB offtia volume. 89 M transactions return the
HTTP status code of “200 OK” and these successfully comg@legtnsactions account
for 6.2 Terabytes of tiffic flows that are processed on the web cache servers.



2.2 Network flow data

In this work, we define a flow as a unique combination of sgldiegtination IP address,
sourcgdestination port number, and protocol. We used network flata dhat were
collected at an incoming 10-Gbps link of a production netw&or each flow, its length

in seconds and size in bytes were recorded. The measurerasrdomducted for 9.5
hours on a weekday in the first quarter of 2009. The formatehttwork flow data set
is: {ctime, mtime, src IP, anonymized client ID (AID), protocol,

src port, dst port, #pkts, bytes}, where ‘ctime” and “mtime” are created
and modified time of a flow, and¢pkts” and “bytes” are the number of packets and
bytes of a flow, respectivelyATID” is randomized destination (client) IP address. The
5-tuple,{src IP, AID, protocol, src port, dst port}composes a flow.

The total amount of incoming tfiac carried during the measurement period was 4.4
TB, which corresponded to the meafieved trdfic rate of 1.03 Gbps. The incoming
traffic consisted of 108 M distinct flows that were originated frofs Bl of sender IP
addresses to 34 K of receiver (client) IP addresses. Of t48s@ M were the incoming
web flows. The triiic volume of the web flows was 1.8 TB (meafiesed trdfic rate
was 0.42 Gbps).

3 Extracting sources of video flows

We now present the techniques for identifying video flows agnthe network flow
data set. We use a source IP address as a key for identificia¢ioif an incoming flow
originates from an IP address associated with a video ghagrvice, we identify the
flow as a video flow.

As mentioned earlier, the key idea of this approach is leiagthe namingaddressing
conventions used by large-scale web farms, where servergrauped by their roles,
e.g., hosting a massive amount of large video files, hostingssive number of thumb-
nails, or providing rich web interfaces. We first present dewi sharing service uses
distinct hostnames for each subtypes of HTTP content-tygeyideo, text, image, and
application. We then collect hostnames of video hostingeser Finally, we compile
the IP addresses that are associated with the hostnames.

3.1 Classifying hostnames with subtypes of HTTP content-pe

This section studies naming convention used in large-addé sharing services and
presents distinct hostnames are used for each sub-cateigdiiyTP content-type. The
web cache server logs are used for the analysis. We also ttedbasic property of the
objects for each category.

We start by looking for a primary domain name for the videorsttaservice of
interest, e.g., YouTube. More specifically, we compare artzmse recorded in web
cache logs with that domain name to see if the hostname in URtichres the regular
expression in perl-derivativg)\ . youtube\ . com$/. If we see a match, we regard the
object as one associated with YouTube. Although we use thdYoe domain as an
example in the following, other prominent video sharingvsss today can also be
explored in a similar way. For brevity, only the results foose services will be shown
later.



Table 1. Statistics of Content-types in web transactions assatiaith YouTube.

Content-typéNo. of transactiongotal volumemean size

video 160,180 681 GB 4.3MB

image 48,756 157 MB| 3.2KB

text 458,357 43GB 9.5KB

application 109,743 359 MB| 3.3KB

other 35,021 23 MB 678 B
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Fig. 1. CDFs of object size for each content-type.

We analyzed the 89 M of successfully processed HTTP traiosa¢tind found 812
K transactions were associated with YouTube. The totalelwf these transactions
was 686 GB in the one-month logs. Frequency of content-tjpethe transactions
to the YouTube domain are summarized in Table 1. A contgue-fg defined as an
Internet media type, which is used by several protocols sscBMTP, HTTP, RTP,
and SIP. Examples of observed sub-types for each contpatane x-flymp4 (video),
jpedgif (image), htmixml (text), and x-shockwave-flagavascript (application). This
variety of content files together forms the video sharingiser Notice that more than
80% of YouTube web transactions carry non-video data. Tugates that these non-
video data are crucial factors from the viewpoint of progeg®verhead rather than
transport overhead. For instance, from the perspectiverstaork service provider,
these non-video transactions consume a lot of resourcesteirk middle boxes, such
as firewalls or NAT, which need to keep track of connections.

Next, we looked at the correlation between the content-&ypksize of an object.
In addition to the total volume and mean size of objects, we thle cumulative distri-
bution functions (CDFs) of object sizes for each contepet{see Fig. 1). Notice that
the majority of image, text, and application objects arelbrRar instance, 99% of im-
age and application objects are less than 10 KB, and 99% bbbgacts are less than
30 KB. In contrast, the size of video objects is heavy-tailatiging over 6 orders of
magnitude, from less than 1 KB to 500 MB. We note that very swidéo objects, e.g.,
less than 20 KB, are likely due to partial or incomplete traission.



Table 2. Number of distinct hostnames observed for YouTube traimaciwith HTTP status
code of 200 or 206.

Content-typ¢# of hostnames

video 490
image 63
text 23
application 5
video image text application
1.5 kjv* Iscache*.c.youtube.com 50k im tube.com 300k www.youtube.com 100k
40 Kl g-youtube.com www.youtube.com
200 ki
1.0 kr 1 30 ki www.youtube.com - 00
50 kr
500,01 1 20kr gdata.youtubeAco’n 100 k- [ 9data.youtube.com ] gdata.youtube.com
10 kr 1
00123 4 5 0172 3 4 5 0172 3 4 5 0172 3 4 5

Fig. 2. Top 5 hostnames by number in YouTube web transactions fér @attent-type.

3.2 Collecting hostnames of server farm

Using the naming convention studied in the previous sulisgcive aim to compile

a list of hostnames of video hosting servers from the webeaehver logs. Process-
ing the data set is straightforward, however, we note thiatritecessary to cope with
side dfects of irregular patterns such as HTTP status code/R@®€ontent”, which is
used in cases where the request was successfully procasstae besponse does not
have a message body [10]. To avoid this, we prune the trdoeadhat have HTTP
status codes other than “2@k” or “206/Partial Content”, which mean the successful
transaction and the response to a request to an object dadatstespectively. This
heuristic eliminates the cases where video hosting sergamn texthtml| content with
the “204No Content” code, “308edirection” code, or other error codes.

The statistics of collected hosthnames for YouTube are shiowfable 2. While
video objects are served by a large number of servers, sljéother content-types are
served by a small set of servers. Next, we focus on the nunilveglmtransactions per
hostname. The top five hostnames for each content-type avensh Fig. 2. Clearly,
the hostnames of the video hosting servers afterdint from those for other content-
types. We also notice that for video hosting servers, thebraiof accesses are balanced
among the top five servers; this indicates that the videdrpservers are likely to be
accessed by load-balancing mechanisms.

We next extract the naming rule of the video hosting servera the collected host-
names. Table 3 shows the hostnames of the video hostingrserf®¥ouTube, where
“®" and “®” represent the variables of a number. In compiling the Visg,complement
the missing numbers in hostnames. For instance, if we obS€pw1 . example. com”
and “foo3.example.com”, but not “foo2.example.com”’, we conjecture that the last
hostname was likely missed during data measurement and tactthé list. We also test
whether the complemented hostname has a valid DNS A regohd(®tal, the gener-
alized hostnames of YouTube video hosting servers coné&i®@8 distinct hostnames.
We note the primary classes of hostnames are significarathedito the top two classes,
i.e., “vo.lscache.c” and “vo.cache.c”. The number of hostnames for these classes is



Table 3.Generalized hostnames of YouTube video hosting servers@nter of observed trans-
actions for each class of hostname.

Hostnames |Comp|emented range |# of observed transactions
vo.scache.c|l1<0<24,1<®<8 130,286
vo.cach®.c |1<0<8,1<9<8 27,485
tc.vo.cach®.c|l<o<24,1<®<8 1626
vo.nonxw.c [1<0<24,1<®<8 25
lax-vo.lax 1< <308 19
sjl-vo.sjl 1 < o < 50 (with exceptions) 19

Table 4. Generalized hostnames of video hosting servers.

Service [Hostnames |Complemented range

Smiley videos$smile-con®®.hicovideo.jp|0<©<6,0<® <3
Smiley videossmile-culp®.nicovideo.jp [0<©<6,0<® <3
Megavideo |wwwo.megavideo.com |G can be any positive integer.
Dailymotion |proxy-o®.dailymotion.com0<©<9,0<® <9

256 (= (24+8)x8). In the rest of this work, we will use these 256 names asttinegpy
hostnames of YouTube.

Using these techniques, we extracted generalized hossaiieleo hosting servers
for other video sharing services. The results are sumndniz€able 4. Although nam-
ing conventions dfer among the services, all the services use their own naraieg r
We finally note that these lists are snapshots and shouldrimdpmlly updated.

3.3 Extracting global IP addresses

This section aims to extract global IP addresses that aceiassd with the hostnames
collected in the previous subsection. It is well known tlaage-scale server farms such
as YouTube and Akamai typically use a large number of gloBaddresses that are
associated with a smaller set of hostnames. The methodddogiyned at balancing
the load of globally distributed accesses across the séawers [9]. This addressing
convention enables us to associate global IP addressepaviticular hostnames that
are used for video hosting.

Because of these spatially distributed load-balancinghaeisms used in server
farms, an IP address obtained by looking up the DNS A recora tlbdstname could
differ in location. For example, Akamai CDN tweaks the DNS meigmaro select the
closest web server from a client. Similarly, YouTube usesHA TP redirection mech-
anism to introduce load balancing in a dynamic way [20]. Thus need to perform
globally distributed DNS resolutions to compile a list ofdBdresses associated with
the list of hostnames.

To achieve this objective, we adopted a methodology prapbgeHuang et al. in
Ref. [9]. They performed globally distributed DNS resotutiof 16 M unique web
hostnames to obtain a complete list of DNS CNAMEs for AkamaNCservers, which
could be used to estimate roughly the scale of the Akamaistrfucture. The key idea of
their approach is to leverage open recursive DNS (ORDNSEsgrwhich will resolve
DNS queries for any clients from anywhere; this approactblesaus to obtain global



Table 5. Number of IP addresses for video hosting servers.

Service |# of addresses
YouTube 2,138
Smiley video$ 74
Megavideo 670
Dailymotion 100

view of the system from an Internet edge site. We use a simjlproach to that shown
in Ref. [9] to compile the list of ORDNS servers. In total, walected more than 5,000
ORDNS servers that are distributed across 68 countries.

For each hostname shown in Tables 3 and 4, we performed DN&itiesis from
all the ORDNS servers we collected, and compiled the redadweswers. The results
are summarized in Table 5. Notice that these services ¢afsisfairly large number
of servers. For example, YouTube has 2,138 unique IP adsastich is much larger
than the original 256 hostnames. Note that the number ofadjlth addresses does
not necessarily correspond to the number of actual videtrigpservers, meaning the
actual infrastructure could be larger than can be seen frornmirnet edge site. In
addition, the extracted IP addresses for video hostingesgiare mostly dierent from
those for other media types, i.e., image, text, and apjdicafhus, the obtained IP
addresses of video hosting servers can be used as a simpfecitve key to identify
the video flows of large-scale video sharing services.

4 Characterizing video flows

In the previous section, we compiled a list of IP addressethfovideo hosting servers,

using web cache server logs. This section uses our netwavldéta set to characterize
traffic flows originating from video sharing services by using tisedf IP addresses.

First, we study fundamental statistics of video flows, whitdlys an essential role in

understanding the structure offiiia flows. Next, we employ in-depth analysis of flow
size distributions, which exhibit intrinsic characteigst Finally, we investigate tempo-
ral characteristics of video tfiéc flows.

4.1 Flow statistics

We investigate the fundamental statistics of video floves, flow size, flow rate, and
flow duration, which form essential parts of theffraworkload model. Since a large
portion of the extracted flows is composed of small flows, Witould be incomplete
flows or error flows, we exclude these small flows from our asialyOn the basis of the
observation from Fig. 1, we use 20 KB as a threshold for pryitiie small flows. As
a result, of the 103K of collected YouTube video flows, 60K fowere removed. We
note that although the number of pruned flows was not smaii; tontribution to the
total traffic volume was negligible. Actually, the pruned flows conttéalless than 1%
in total trafic volume. We also note that majority of the pruned flows wecemplete
i.e., most of them were one-packet TCP flows with SXBK flag, originated from
youtube video hosting servers; i.e., the video hostingessrwere likely port-scanned
by some of clients. Since we are interested in the impact offybe trdfic from the



Table 6. Statistics of observed flows that are larger than 20 KB.

Service |# of flows/Mean siz¢Mean rat¢Mean duration
YouTube 43,960 4.1 MB| 1.3 Mbpg 41.8 sec
Smiley video$ 3,438 21.3 MB| 2.6 Mbps 139.8 sec
Megavideo 1,354 30.0 MB| 1.3 Mbpsg 232.6 sec
Dailymotion 730 13.7 MB| 1.5 Mbps 96.0 sec
All web 5,043,927 0.33 MB| 0.9 Mbps 16.5 sec

Table 7.Uploading limitations (as of 1Q 2009).

Service |Free membership |Premium membership

YouTube 10 minutes or 2 GB per video |20 GB per video (partners)
Smiley video$40 MB per video 100 MB per video
Megavideo |100 MB per video 5 GB per video
Dailymotion |20 minutes or 150 MB per videe

network service provider perspective, focusing on flows tediver actual video data
is essential.

The basic statistics for these metrics are summarized ife&ln general, video
flows are larger, faster, and longer than conventional wetstld his observation agrees
with the previous work [15] by Plissonneau et al. Next, weklado the detailed char-
acteristics of each metric.

Flow size The top-left graph of Fig. 3 presents log-log complemgntarmula-
tive distribution function (CCDF) plots for flow size didttitions. While the web flows
(shown as “All web” in the legend of the graph) obey a cleareRzatike distribution
with moderate decaying at the tail, all the other video flowsilgit different character-
istics. In general, they are significantly heavy-tailed;ifstance, more than 60% of the
video flows are larger than 1 MB for all video services, whidsed than 3% of flows are
larger than 1 MB in all the web flows. This significant heavijeidness can also be seen
in the flows of P2P file-sharing applications. What makes ideo/flows distinguish-
able from P2P flows is shown next. That is, the video flows d@kbibar change points
in the middle area, where probability distributions droprgity, i.e., the points at 30,
40, and 100 MB. In fact, we find that these change points cporegto the intrinsic ca-
pacity limitation of the video sharing services. This dataiummarized in Table 7. We
can see that the file size limitations agree with the changepof the flow size distri-
butions. For example, the change point of Megavideo flowdigiibution is 100 MB,
which is exactly the upload file size limitation for non-priem (free) membership.

We conclude the following from these observations:

— Size distributions of video flows are quite heavy-tailed.
— The tail parts of flow size distributions for video sharingwéees are constrained by
the limitation of available service resources for free mership (upload file size).

Flow rate: Next, we look at the flow rate, which is the number of bits dad
by flow duration. The top-right graph of Fig. 3 shows log-lo§QF plots for flow
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flow size distribution (bottom right).

rate distributions. In contrast to flow size distribution® do not see much fierence
among the flows. An exception is a change point of 3 Mbps forl&miideos. This
observation again agrees with thefeientiated serviceftered by the providers, i.e.,
premium members enjoy high-speed downloading while frembezs do not. We note
that all the distributions fit the log-normal distributiongll. For brevity, we omit the
results.

Flow duration: Finally, we look into the flow duration. The bottom-left giraof
Fig. 3 presents log-log CCDF plots of flow duration distribns. While we have seen
the dfects of available service capacities on the distributiamssize and rate, we do
not see the féects in the flow duration, despite the fact that the mean sizenaean
duration are positively correlated (see Table 6). Notettiactual download time (i.e.,
flow duration) may depend on other factors, such as througsfraccess links or CPU
resources of the end-terminal devices, which could be idedist different among the
clients. Therefore, we do not see clear change points fdtdheduration distributions.

4.2 Characterizing the size distributions of video flows

In the previous section, we found that the flow size distidng of current video sharing
services have an intrinsic property. That s, the tail pettte distributions is constrained
by the available service capacity, e.g., upload file sizétdition. In this section, we
attempt to characterize the flow size distribution to betteterstand its structure.



We start by approximating the distribution with known distitions. Assume that
flows for free and premium membership can be modeled wifferdint distribution
models. Since flow sizes for free membership are truncatedcattain threshold, we
adopt the discrete truncated Pareto distribution (DTPI3] ftr this class. For flow
sizes for premium membership, we adopt the simple disceatet®@distribution (DPD),
which does not include any truncations.

Let X be a discrete random variable, which represents the sizé@iaThe prob-
ability mass function of DTPD is given as

X0 — (x+ 1)
—61 —61 ’

@ 1
which satisfiesP(X > a1) = 1 andP(X > g;) = 0. Note thatP(X > x) = (x % -
B /(™ = g;™) andP(X = x) = P(X > X) — P(X > x + 1). The property of DTPD
enables us to capture both the heavy-tailedness and theaiatsat the thresholg.
Similarly, the distribution function of DPD is given as
X2 — (x+ 1)

—6,
@,

P(X = x) = f(X; a1,B1,61) =

P(X = X) = g(X; @z, 62) =

We now illustrate how the flow size distribution can be apprated with the
DTPD and DPD in a graphical manner. YouTube is chosen as @erstady.

We first seta; = 20,000 andB; = 30,000,000 (bytes), which are the minimum
flow size (20 KB) we are interested in, and the graphicalljnestied truncation point,
respectively. Note that YouTube has two-way constrairte and time; thus, the trun-
cation point reflects their mix. In genergl, reflects the capacity limitation for a video
sharing service.

Next, we estimate the parameters of DTPD and DPD indepelydesing a simple
assumption, i.e., contribution of flows from premium user®TPD is negligible. The
shape parameter of DTPD is estimated with the maximal hiloeld estimation (MLE),
using the given parameters andp;. Note that the estimation process requires numer-
ical calculation to solve the ML equation. See our previoosk\13] for the detail of
calculation. Finally, we estimate the shape parameter @ fd? flows larger thars;
with the least square method. We note that the approximagtdbditions above are
notcontinuous at the truncation point in theory. Thus, we canse the approximated
distributions to derive statistics such as mean or varia@ce objective is to illustrate
that the actual flow size distribution of a video sharing gerean be divided into two
distinct types of distribution models, DTPD and DPD.

The estimated shape parameterséare 0.008 for DTPD and), = 2.76 for DPD.
The bottom-right graph of Fig. 3 shows the results. NotichidTPD and DPD ap-
proximate the distribution well. In addition, notice thhetshape parameter of DTPD
takes extremal values, i.@.,~ 0.008 < 1 indicates that the first and second moments
could be divergent if there is no constraint. In fact, moantth0% of flows is larger than
10 MB. We conjecture that these skewed parameters refleeffhat of the constraints.
That is, many free membership users who hope to upload ldegeréed tawompress
or dividethe files so that they fit into the service capacity. Accortingany files that
were originally larger than the limitation are made smahemn the limitation; thus, they
show thetruncationproperty. We note that flow size distribution and file sizeriis-
tion are not exactly the same because the former reflectofndarity of file accesses.
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Fig. 4. Time-series of triic volume (top), number of active flows (middle), and numbearoizal
flows (bottom), for tréfic flows originating from YouTube servers.

However, the characteristics of flow size distribution dddae correlated with the flow
size distribution because a flow basically originates frdiifea

In summary, we found that the flow size distributions of laggale video shar-
ing services exhibisignificant heavy-tailednessd thetruncationproperty, which are
quite diterent from the property of conventional webffiaflows.

4.3 Temporal characteristics

Finally, we focus on the temporal characteristics of videavfl. Understanding the
temporal characteristics such as time variability and florval process is crucial in
building realistic tréfic model. Since our data set consists of 9.5-hours dfidrdata,
we cannot study the cyclic patterns offiig, i.e., diurnal or weekly variation as shown
in [15]. However, as we shall see shortly, the multiple tisoade analysis enables us to
explore the temporal structure of video sharingdfica Figure 4 shows the time-series
of (1) total trafic volume, (2) number of active flows, and (3) number of arril@aks,
for traffic flows originating from YouTube servers. We see that thi¢r&olume and
number of active flows are positively correlated (correlatcodficient is more than
0.8). In contrast, the number of arrival flows is independdrihese two (correlation
codficient is less than 0.05).

Figure 5 shows auto-correlation functions for the timdeseof total trafic volume,
number of active flows, and number of arrival flows. Whildficavolume and number
of active flows exhibit a long-range dependence (LRD) priypére number of arrival
flows doesnot have the time correlation structure, i.e., it exhibits themorylessness
property. These observations can be explained by theitradittreffic source model,
such as that in Ref. [17]; i.e., aggregation of heavy-tasledrce tréic (i.e., flows with
heavy-tailed size distribution) exhibits the LRD charaistés.

Finally, we aim to validate the assumption that flow arrivaqess can be modeled
with the Poisson model. Figure 6 shows the probability masstfon of the number
of arrival flows per a time unit (1 sec) in normal and log scalks also plot the ap-
proximated distribution with the Poisson distribution rebdVhile the approximation
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works well over the several orders of magnitudes, we obsgismall number of out-
liers, e.g.n > 10. For instance, we observe an event 27, which means 27 distinct
flows are observed in a second. According to the Poisson gippation, the expected
probability that the event occurs should be less thart®L@hich is unlikely to happen
in the 9.5-hours measurement period. Thus, it is likely thate extremal congestion
periods are exceptional. On the basis of careful examinatfdhe flows that consti-
tute these outliers, we conjecture that these outlierssseciated with thélash-crowd
effectbecause the observed client IP addresses are not identigad dhe time periods.

We also applied Pearson’s chi-square test to make our aiganconclusive. Note
that the outliers were removed before applying the stasistest. We tested a null hy-
pothesis that the observed distribution was identical & Rbisson distribution. We
concluded that we cannot reject the null hypothesis at 1B I@vel of significance.

From these observations, we may conclude that (1) the agtgedrafic of video
sharing services can be modeled with the LROfitanodel and, (2) after removing
outliers, the flow arrival process of YouTube can be well medevith the Poisson
arrival process. We validated that these observationsfbolthie other services as well
and omit the results due to the space limitation.

5 Related work

This section reviews prior studies also on the large-scaleovsharing services and
compares them to ours. Recently, many researchers havgefon characterizing the
workload of large-scale video sharing services [1-4, 71815, 20]. Huang et al. [8]
analyzed the access log of MSN Video [14] and found 95% of sse® could have
been eliminated by using peer-assisted content delivestgsy. Cha et al. [2] analyzed
the properties of video files on YouTube and derived simitaplications. Cheng et
al. [3, 4] crawled the YouTube site and found that statissiesh as length, access pat-
terns, growth trend, and active life span were quitéedént compared to traditional
video streaming applications. Kang et al. [11] measuredaralyzed Yahoo! Video
sites [18] to characterize workload of the video sharingiser Based upon obtained
characteristics, they gave guideline for SLA and worklogltesiuling schemes on the



resource managemerttieiency of an online video data center. Abhari and Soraya [1]
investigated YouTube popularity distribution and accestsgons through analysis of a
vast amount of data collected by crawling YouTube API. Onfibsis of the obser-
vations, they presented essential elements of workloadrger that can be used for
benchmarking caching mechanisms.

While the above works were attempted from video sharingisermrovider per-
spective, the following works were oriented for networkvées providers, like ours.
Zink et al. [20] analyzed YouTube fifec at a campus network and analyzed fbeal
popularity characteristics of video files. In Ref. [7], Gall al. investigated the statistics
of user sessions (i.e., flows) on YouTube. They showed YoeTigers transfer more
data and have longéhink times than traditional Web workloads. Their observation on
file transfer volume of YouTube is coherent with our findings.

Note that both the refs [20] and [7] rely on deep packet inspe¢DPI) for their
analysis. In general, employing DPI exploits payload infation and has been prone
to privacy problem. In contrast, our method, which basesamingaddressing con-
ventions of large-scale server farms, does not require aghopd information nor IP
addresses of end-users. It just leveragprser-siddP address, which is publicly avail-
able information. Also, thanks to its simplicity, the ddten method is light-weight
and scalable, while conventional DPI requires expensivegssing, e.g., wire rate byte
stream matching with stateful inspection of all incomingémn high-speed links; thus
employing DPI at high-speed links is dfitult task.

Plissonneau et al. [15] characterized the impact of YouTtdsgc on a French re-
gional ADSL point of presence. They revealed that YouTuldewitransfers are faster
and larger than other large Web transfers. Their obsenstigree with our study on
YouTube and the other video services as well. They also ledehat performance of
video transfers and network load on the underlying ADSL ekvplatform are corre-
lated. In analysing the data set, they proposed a techniogetecting YouTube video
traffic by looking up RDNS and commercial Geo-IP database with dweneistics. We
note that our detection method is more comprehensive imetiktg IP address blocks
operated by service providers, and can be seen as a geatoaliaf their approach.

We finally note that the originality of our work lies in the #&& contributions: (1)
proposing a simple and privacy-friendly way of identifyimigleo flows, (2) investigat-
ing multiple large-scale video sharing services simultarsty, and (3) tréic analysis
from the perspective of network service providers, inahgdihe temporal analysis of
traffic.

6 Conclusion and Future Work

In this work, we attempted to characterizefii@originating from large-scale video
sharing services from the perspective of a network serviogigeer. We presented a
simple methodology that enables us to identify video flowsbsrelating web cache
server logs and network measurement data. The key ideadehinapproach is to
leverage the addressifmgming conventions used in large-scale server farms. We ana
lyzed the characteristics of the resulting classified vifleos and revealed that flows
originating from current large-scale video sharing sexgicave intrinsic characteristics,
the significant heavy-tailednessd thetruncation property which have not been ob-
served in existing web tfAc models. The origin of these characteristics is rooteden th
differentiated service provided for free and premium membgersti also investigated



the temporal characteristics of video flows and revealetfliha arrival process can be
modeled with the Poisson arrival process and temporalbifitjeexhibit LRD charac-
teristics. Our future work includes in-depth analysis @& trew distribution model. We

Wi

Il study empirically how the model fits the actual data. Weoaaim to understand

the mechanism that governs the distributions and its immptias on network resource
management.

References

»

10.
11.

12.
13.

14.
15.

16.
17.

18.
19.
20.

. A. Abhari and M. Soraya. Workload Generation for YouTubiltimedia Tools and Appli-
cations journal June 2009.

. M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn, and S. Moon. | Tueu Tube, Everybody
Tubes: Analyzing the World’s Largest User Generated Cdniateo System. IrProceed-
ings of the 7th ACM SIGCOMM Conference on Internet Measungrpages 1-14, 2007.

. X. Cheng, C. Dale, and J. Liu. Understanding the Charatites of Internet Short Video
Sharing: YouTube as a Case Stu@oRR abg0707.3670, 2007.

. X. Cheng, C. Dale, and J. Liu. Statistics and Social NetvadrYouTube Videos. InWQoS
2008 pages 229-238, 2008.

. Cisco Systems, Inc. Cisco Visual Networking Index — Fastcand Methodol-
ogy, 2007-2012. http://newsroom.cisco.com/d1l1ls/2008/ekits/Cisco_Visual_
Networking_Index_061608.pdf, June 2008.

. Dailymotion.http://www.dailymotion.com.
. P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Characterizing 4¢r Sessions on YouTube. In

Fifteenth Annual Multimedia Computing and Networking @oafice (MMCN)2008.

. C. Huang, J. Li, and K. W. Ross. Can Internet Video-on-DaeanBe Profitable? IMACM

SIGCOMM 2007 pages 133—-144, Aug. 2007.

. C. Huang, A. Wang, J. Li, and K. W. Ross. Measuring and Eatalg Large-scale CDNs. In

Microsoft Research Technical Report MSR-TR-2008-2068.

IRCache projectattp://www.ircache.net.

X. Kang, H. Zhang, G. Jiang, H. Chen, X. Meng, and K. YoshilMeasurement, Modeling,
and Analysis of Internet Video Sharing Site Workload: A C&sedy. InProceedings of
IEEE International Conference on Web Servigesges 278-285, 2008.

Megavideohttp: //www.megavideo. com.

T. Mori, T. Takine, J. Pan, R. Kawahara, M. Uchida, and &oGldentifying Heavy-Hitter
Flows from Sampled Flow StatisticEEICE Transactions90-B(11):3061-3072, 2007.
MSN Video.http://video.msn.com.

L. Plissonneau, T. En-Najjary, and G. Urvoy-Keller. R#ing Web Trdfic from a DSL
Provider Perspective: the Case of YouTubePtaceedings of the 19th ITC Specialist Semi-
nar, Oct 2008.

Smiley Videoshttp://www.nicovideo. jp.

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson.|fSémilarity through high-
variability: statistical analysis of ethernet lanftra at the source levelEEE/ACM Trans.
Netw, 5(1):71-86, 1997.

Yahoo! Videohttp://video.yahoo.com/.

YouTubehttp://www.youtube. com.

M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics ofiYube Network Trfiic at a
Campus Network — Measurements, Models, and Implicati@smput. Netw.53(4):501—
514, 2009.



